LEADER 05183nam 2200613Ia 450 001 9910830164503321 005 20230721030224.0 010 $a1-280-92162-5 010 $a9786610921621 010 $a3-527-61072-3 010 $a3-527-61071-5 035 $a(CKB)1000000000376984 035 $a(EBL)482231 035 $a(OCoLC)173134654 035 $a(SSID)ssj0000211439 035 $a(PQKBManifestationID)11169155 035 $a(PQKBTitleCode)TC0000211439 035 $a(PQKBWorkID)10311214 035 $a(PQKB)11033842 035 $a(MiAaPQ)EBC482231 035 $a(EXLCZ)991000000000376984 100 $a20061003d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aNitride semiconductor devices$b[electronic resource] $eprinciples and simulation /$fedited by Joachim Piprek 210 $aWeinheim $cWiley-VCH ;$a[Chichester $cJohn Wiley [distributor]]$dc2007 215 $a1 online resource (521 p.) 300 $aDescription based upon print version of record. 311 $a3-527-40667-0 320 $aIncludes bibliographical references and index. 327 $aNitride Semiconductor Devices: Principles and Simulation; Contents; Preface; List of Contributors; Part 1 Material Properties; 1 Introduction; 1.1 A Brief History; 1.2 Unique Material Properties; 1.3 Thermal Parameters; References; 2 Electron Bandstructure Parameters; 2.1 Introduction; 2.2 Band Structure Models; 2.3 Band Parameters; 2.3.1 GaN; 2.3.2 AlN; 2.3.3 InN; 2.3.4 AlGaN; 2.3.5 InGaN; 2.3.6 InAlN; 2.3.7 AlGaInN; 2.3.8 Band Offsets; 2.4 Conclusions; References; 3 Spontaneous and Piezoelectric Polarization: Basic Theory vs. Practical Recipes 327 $a3.1 Why Spontaneous Polarization in III-V Nitrides?3.2 Theoretical Prediction of Polarization Properties in AlN, GaN and InN; 3.3 Piezoelectric and Pyroelectric Effects in III-V Nitrides Nanostructures; 3.4 Polarization Properties in Ternary and Quaternary Alloys: Nonlinear Compositional Dependence and Order vs. Disorder Effects; 3.5 Orientational Dependence of Polarization; References; 4 Transport Parameters for Electrons and Holes; 4.1 Introduction; 4.2 Numerical Simulation Model; 4.2.1 Scattering in the Semi-Classical Boltzmann Equation; 4.3 Analytical Models for the Transport Parameters 327 $a4.4 GaN Transport Parameters4.4.1 Electron Transport Coefficients; 4.4.2 Hole Transport Coefficients; 4.5 AlN Transport Parameters; 4.5.1 Electron Transport Coefficients; 4.5.2 Hole Transport Coefficients; 4.6 InN Transport Parameters; 4.6.1 Electron Transport Coefficients; 4.6.2 Hole Transport Coefficients; 4.7 Conclusions; References; 5 Optical Constants of Bulk Nitrides; 5.1 Introduction; 5.2 Dielectric Function and Band Structure; 5.2.1 Fundamental Relations; 5.2.2 Valence Band Ordering, Optical Selection Rules and Anisotropy; 5.3 Experimental Results; 5.3.1 InN; 5.3.2 GaN and AlN 327 $a5.3.3 AlGaN Alloys5.3.4 In-rich InGaN and InAlN Alloys; 5.4 Modeling of the Dielectric Function; 5.4.1 Analytical Representation of the Dielectric Function; 5.4.2 Calculation of the Dielectric Function for Alloys; 5.4.3 Influence of Electric Fields on the Dielectric Function; References; 6 Intersubband Absorption in AlGaN/GaN Quantum Wells; 6.1 Introduction; 6.2 Theoretical Model; 6.2.1 Spontaneous and Piezoelectric Polarization; 6.3 Numerical Implementation; 6.3.1 Achieving Self-consistency: The Under-Relaxation Method; 6.3.2 Predictor-Corrector Approach 327 $a6.4 Absorption Energy in AlGaN-GaN MQWs6.4.1 Numerical Analysis of Periodic AlGaN-GaN MQWs; 6.4.2 Numerical Analysis of Non-periodic AlGaN-GaN MQWs and Comparison with Experimental Results; 6.5 Conclusions; References; 7 Interband Transitions in InGaN Quantum Wells; 7.1 Introduction; 7.2 Theory; 7.2.1 Bandstructure and Wavefunctions; 7.2.2 Semiconductor Bloch Equations; 7.2.3 Semiconductor Luminescence Equations; 7.2.4 Auger Recombination Processes; 7.3 Theory-Experiment Gain Comparison; 7.4 Absorption/Gain; 7.4.1 General Trends; 7.4.2 Structural Dependence; 7.5 Spontaneous Emission 327 $a7.6 Auger Recombinations 330 $aThis is the first book to be published on physical principles, mathematical models, and practical simulation of GaN-based devices. Gallium nitride and its related compounds enable the fabrication of highly efficient light-emitting diodes and lasers for a broad spectrum of wavelengths, ranging from red through yellow and green to blue and ultraviolet. Since the breakthrough demonstration of blue laser diodes by Shuji Nakamura in 1995, this field has experienced tremendous growth worldwide. Various applications can be seen in our everyday life, from green traffic lights to full-color outdoor dis 606 $aSemiconductors 606 $aNitrides 615 0$aSemiconductors. 615 0$aNitrides. 676 $a537.6223 676 $a621.38152 701 $aPiprek$b Joachim$0625980 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830164503321 996 $aNitride semiconductor devices$93939449 997 $aUNINA