LEADER 05416nam 2200649Ia 450 001 9910830159003321 005 20170810191537.0 010 $a1-281-08804-8 010 $a9786611088040 010 $a3-527-61142-8 010 $a3-527-61143-6 035 $a(CKB)1000000000377465 035 $a(EBL)481882 035 $a(SSID)ssj0000205782 035 $a(PQKBManifestationID)11200926 035 $a(PQKBTitleCode)TC0000205782 035 $a(PQKBWorkID)10193689 035 $a(PQKB)10417707 035 $a(MiAaPQ)EBC481882 035 $a(OCoLC)181348972 035 $a(EXLCZ)991000000000377465 100 $a20070202d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMo?ssbauer effect in lattice dynamics$b[electronic resource] $eexperimental techniques and applications /$fYi-Long Chen and De-Ping Yang 210 $aWeinheim $cWiley-VCH ;$a[Chichester $cJohn Wiley, distributor]$dc2007 215 $a1 online resource (427 p.) 300 $aDescription based upon print version of record. 311 $a3-527-40712-X 320 $aIncludes bibliographical references and index. 327 $aMo?ssbauer Effect in Lattice Dynamics; Contents; Preface; 1 The Mo?ssbauer Effect; 1.1 Resonant Scattering of ?-Rays; 1.2 The Mo?ssbauer Effect; 1.2.1 Compensation for Recoil Energy; 1.2.2 The Discovery of the Mo?ssbauer Effect; 1.3 The Mo?ssbauer Spectrum; 1.3.1 The Measurement of a Mo?ssbauer Spectrum; 1.3.2 The Shape and Intensity of a Spectral Line; 1.4 The Classical Theory; 1.5 The Quantum Theory; 1.5.1 Coherent States of a Harmonic Oscillator; 1.5.2 Gamma Radiation from a Bound Nucleus; 1.5.3 Mo?ssbauer Effect in a Solid; 1.5.4 Average Energy Transferred; References; 2 Hyperfine Interactions 327 $a2.1 Electric Monopole Interaction2.1.1 A General Description; 2.1.2 The Isomer Shift; 2.1.3 Calibration of Isomer Shift; 2.1.4 Isomer Shift and Electronic Structure; 2.2 Electric Quadrupole Interaction; 2.2.1 Electric Quadrupole Splitting; 2.2.2 The Electric Field Gradient (EFG); 2.2.2.1 Sources of EFG; 2.2.2.2 Temperature Effect on EFG; 2.2.3 Intensities of the Spectral Lines; 2.2.4 The Sign of EFG; 2.3 Magnetic Dipole Interaction; 2.3.1 Magnetic Splitting; 2.3.2 Relative Line Intensities; 2.3.3 Effective Magnetic Field; 2.4 Combined Quadrupole and Magnetic Interactions 327 $a2.5 Polarization of ?-Radiation2.5.1 Polarized Mo?ssbauer Sources; 2.5.2 Absorption of Polarized ?-Rays; 2.6 Saturation Effect in the Presence of Hyperfine Splittings; 2.7 Mo?ssbauer Spectroscopy; References; 3 Experimental Techniques; 3.1 The Mo?ssbauer Spectrometer; 3.2 Radiation Sources; 3.3 The Absorber; 3.3.1 Estimation of the Optimal Thickness; 3.3.2 Sample Preparation; 3.4 Detection and Recording Systems; 3.4.1 Gas Proportional Counters; 3.4.2 NaI(Tl) Scintillation Counters; 3.4.3 Semiconductor Detectors; 3.4.4 Reduction and Correction of Background Counts; 3.4.5 Geometric Conditions 327 $a3.4.6 Recording Systems3.5 Velocity Drive System; 3.5.1 Velocity Transducer; 3.5.2 Waveform Generator; 3.5.3 Drive Circuit and Feedback Circuit; 3.5.4 Velocity Calibration; 3.5.4.1 Secondary Standard Calibration; 3.5.4.2 Absolute Velocity Calibration; 3.6 Data Analysis; 3.6.1 Fitting Individual Lorentzian Lines; 3.6.1.1 Spectra from Crystalline Samples; 3.6.1.2 Spectra from Amorphous Samples; 3.6.2 Full Hamiltonian Site Fitting; 3.6.3 Fitting Thick Absorber Spectra; References; 4 The Basics of Lattice Dynamics; 4.1 Harmonic Vibrations; 4.1.1 Adiabatic Approximation 327 $a4.1.2 Harmonic Approximation4.1.3 Force Constants and Their Properties; 4.1.4 Normal Coordinates; 4.2 Lattice Vibrations; 4.2.1 Dynamical Matrix; 4.2.2 Reciprocal Lattice and the Brillouin Zones; 4.2.2.1 Reciprocal Lattice; 4.2.2.2 Brillouin Zones; 4.2.3 The Born-von Karman Boundary Condition; 4.2.4 Acoustic and Optical Branches; 4.2.5 Longitudinal and Transverse Waves; 4.2.6 Models of Interatomic Forces in Solids; 4.3 Quantization of Vibrations: The Phonons; 4.4 Frequency Distribution and Thermodynamic Properties; 4.4.1 The Lattice Heat Capacity; 4.4.2 The Density of States 327 $a4.4.2.1 The Einstein Model 330 $aThis up-to-date review closes an important gap in the literature by providing a comprehensive description of the M?ssbauer effect in lattice dynamics, along with a collection of applications in metals, alloys, amorphous solids, molecular crystals, thin films, and nanocrystals. It is the first to systematically compare M?ssbauer spectroscopy using synchrotron radiation to conventional M?ssbauer spectroscopy, discussing in detail its advantages and capabilities, backed by the latest theoretical developments and experimental examples.Intended as a self-contained volume that may be used as a c 606 $aLattice dynamics 606 $aMo?ssbauer effect 606 $aMo?ssbauer spectroscopy 615 0$aLattice dynamics. 615 0$aMo?ssbauer effect. 615 0$aMo?ssbauer spectroscopy. 676 $a530.411 676 $a537.5352 700 $aChen$b Yi-Long$01611257 701 $aYang$b De-Ping$01611258 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830159003321 996 $aMo?ssbauer effect in lattice dynamics$93939412 997 $aUNINA