LEADER 01237nam--2200409---450- 001 990000719610203316 005 20090416134113.0 010 $a0-333-44920-7 035 $a0071961 035 $aUSA010071961 035 $a(ALEPH)000071961USA01 035 $a0071961 100 $a20011106d1988----km-y0itay0103----ba 101 $aeng 102 $aGB 105 $a||||||||001yy 200 1 $aMacmillan dictionary of business and management$fRichardn lamming & John Bessent 210 $aLondon$cMacmillan$d1988 215 $a225 p.$d24 cm 410 $12001 461 1$1001-------$12001 606 0 $aOrganizzazione$xEnciclopedie e dizionari 606 0 $aAffari$xEnciclopedie e dizionari 676 $a658.00321 700 1$aLAMMING,$bRichard$08589 701 1$aBESSET,$bJohn$0549428 801 0$aIT$bsalbc$gISBD 912 $a990000719610203316 951 $a658.003 LAM 1 (IX D 251)$b96183 LM$cIX D$d00206918 959 $aBK 969 $aeco 979 $aPATTY$b90$c20011106$lUSA01$h1308 979 $c20020403$lUSA01$h1720 979 $aPATRY$b90$c20040406$lUSA01$h1649 979 $aRSIAV2$b90$c20090416$lUSA01$h1341 996 $aMacmillan dictionary of business and management$9962765 997 $aUNISA LEADER 01218nam--2200433---450- 001 990006160750203316 005 20160714114802.0 010 $a88-438-0362-X 035 $a000616075 035 $aUSA01000616075 035 $a(ALEPH)000616075USA01 035 $a000616075 100 $a20160714d2001----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a11 settembre$fNoam Chomsky 210 $aMilano$cM. Tropea$d2001 215 $a124 p.$d19 cm. 225 2 $a<> tigli 300 $aIn cop.: Le ragioni di chi? 410 0$12001$a<> tigli 454 1$12001$a9-11$91393078 461 1$1001-------$12001 517 1 $aUndici settembre 606 0 $aPaesi islamici$xRelazioni con i Paesi occidentali 606 0 $aStrage$yNew York$z2001 676 $a909.097671 700 1$aCHOMSKY,$bNoam$027033 801 0$aIT$bsalbc$gISBD 912 $a990006160750203316 951 $aXV.10. 149$b252034 L.M.$cXV.10.$d382628 959 $aBK 969 $aUMA 979 $aRIVELLI$b90$c20160714$lUSA01$h1144 979 $aRIVELLI$b90$c20160714$lUSA01$h1144 979 $aRIVELLI$b90$c20160714$lUSA01$h1148 996 $a9-11$91393078 997 $aUNISA LEADER 10885nam 2200649 a 450 001 9910830155303321 005 20170815095654.0 010 $a1-118-47814-2 010 $a1-283-99384-8 010 $a1-118-47817-7 010 $a1-118-47815-0 035 $a(CKB)2670000000325704 035 $a(EBL)1118504 035 $a(SSID)ssj0000819063 035 $a(PQKBManifestationID)11482092 035 $a(PQKBTitleCode)TC0000819063 035 $a(PQKBWorkID)10844225 035 $a(PQKB)10805370 035 $a(MiAaPQ)EBC1118504 035 $a(CaSebORM)9781118478158 035 $a(OCoLC)823860058 035 $a(PPN)18855517X 035 $a(EXLCZ)992670000000325704 100 $a20120818d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNonlinear inverse problems in imaging$b[electronic resource] /$fJin Keun Seo, Eung Je Woo 205 $a1st edition 210 $aChichester, West Sussex, U.K. $cJohn Wiley & Sons Inc.$d2013 215 $a1 online resource (375 p.) 300 $aDescription based upon print version of record. 311 $a0-470-66942-X 320 $aIncludes bibliographical references and index. 327 $aMachine generated contents note: Preface List of Abbreviations 1 Introduction 1.1 Forward Problem 1.2 Inverse Problem 1.3 Issues in Inverse Problem Solving 1.4 Linear, Nonlinear and Linearized Problems 2 Signal and System as Vectors 2.1 Vector Space 2.1.1 Vector Space and Subspace 2.1.2 Basis, Norm and Inner Product 2.1.3 Hilbert Space 2.2 Vector Calculus 2.2.1 Gradient 2.2.2 Divergence 2.2.3 Curl 2.2.4 Curve 2.2.5 Curvature 2.3 Taylor's Expansion 2.4 Linear System of Equations 2.4.1 Linear System and Transform 2.4.2 Vector Space of Matrix 2.4.3 Least Square Solution 2.4.4 Singular Value Decomposition (SVD) 2.4.5 Pseudo-inverse 2.5 Fourier Transform 2.5.1 Series Expansion 2.5.2 Fourier Transform 2.5.3 Discrete Fourier Transform (DFT) 2.5.4 Fast Fourier Transform (FFT) 2.5.5 Two-dimensional Fourier Transform References 3 Basics for Forward Problem 3.1 Understanding PDE using Images as Examples 3.2 Heat Equation 3.2.1 Formulation of Heat Equation 3.2.2 One-dimensional Heat Equation 3.2.3 Two-dimensional Heat Equation and Isotropic Diffusion 3.2.4 Boundary Conditions 3.3 Wave Equation 3.4 Laplace and Poisson Equations 3.4.1 Boundary Value Problem 3.4.2 Laplace Equation in a Circle 3.4.3 Laplace Equation in Three-dimensional Domain 3.4.4 Representation Formula for Poisson Equation References 4 Analysis for Inverse Problem 4.1 Examples of Inverse Problems in Medical Imaging 4.1.1 Electrical Property Imaging 4.1.2 Mechanical Property Imaging 4.1.3 Image Restoration 4.2 Basic Analysis 4.2.1 Sobolev Space 4.2.2 Some Important Estimates 4.2.3 Helmholtz Decomposition 4.3 Variational Problems 4.3.1 Lax-Milgram Theorem 4.3.2 Ritz Approach 4.3.3 Euler-Lagrange Equations 4.3.4 Regularity Theory and Asymptotic Analysis 4.4 Tikhonov Regularization and Spectral Analysis 4.4.1 Overview of Tikhonov Regularization 4.4.2 Bounded Linear Operators in Banach Space 4.4.3 Regularization in Hilbert Space or Banach Space 4.5 Basics of Real Analysis 4.5.1 Riemann Integrable 4.5.2 Measure Space 4.5.3 Lebesgue Measurable Function 4.5.4 Pointwise, Uniform, Norm Convergence and Convergence in Measure 4.5.5 Differentiation Theory References 5 Numerical Methods 5.1 Iterative Method for Nonlinear Problem 5.2 Numerical Computation of One-dimensional Heat equation 5.2.1 Explicit Scheme 5.2.2 Implicit Scheme 5.2.3 Crank-Nicolson Method 5.3 Numerical Solution of Linear System of Equations 5.3.1 Direct Method using LU Factorization 5.3.2 Iterative Method using Matrix Splitting 5.3.3 Iterative Method using Steepest Descent Minimization 5.3.4 Conjugate Gradient (CG) Method 5.4 Finite Difference Method (FDM) 5.4.1 Poisson Equation 5.4.2 Elliptic Equation 5.5 Finite Element Method (FEM) 5.5.1 One-dimensional Model 5.5.2 Two-dimensional Model 5.5.3 Numerical Examples References 6 CT, MRI and Image Processing Problems 6.1 X-ray CT 6.1.1 Inverse Problem 6.1.2 Basic Principle and Nonlinear Effects 6.1.3 Inverse Radon Transform 6.1.4 Artifacts in CT 6.2 MRI 6.2.1 Basic Principle 6.2.2 K-space Data 6.2.3 Image Reconstruction 6.3 Image Restoration 6.3.1 Role of p in (6.35) 6.3.2 Total Variation Restoration 6.3.3 Anisotropic Edge-preserving Diffusion 6.3.4 Sparse Sensing 6.4 Segmentation 6.4.1 Active Contour Method 6.4.2 Level Set Method 6.4.3 Motion Tracking for Echocardiography References 7 Electrical Impedance Tomography 7.1 Introduction 7.2 Measurement Method and Data 7.2.1 Conductivity and Resistance 7.2.2 Permittivity and Capacitance 7.2.3 Phasor and Impedance 7.2.4 Admittivity and Trans-impedance 7.2.5 Electrode Contact Impedance 7.2.6 EIT System 7.2.7 Data Collection Protocol and Data Set 7.2.8 Linearity between Current and Voltage 7.3 Representation of Physical Phenomena 7.3.1 Derivation of Elliptic PDE 7.3.2 Elliptic PDE for Four-electrode Method 7.3.3 Elliptic PDE for Two-electrode Method 7.3.4 Min-max Property of Complex Potential 7.4 Forward Problem and Model 7.4.1 Continuous Neumann-to-Dirichlet Data 7.4.2 Discrete Neumann-to-Dirichlet Data 7.4.3 Nonlinearity between Admittivity and Voltage 7.5 Uniqueness Theory and Direct Reconstruction Method 7.5.1 Calder´on's Approach 7.5.2 Uniqueness and Three-dimensional Reconstruction: Infinite Measurements 7.5.3 Nachmann's D-bar Method in Two Dimension 7.6 Backprojection Algorithm 7.7 Sensitivity and Sensitivity Matrix 7.7.1 Perturbation and Sensitivity 7.7.2 Sensitivity Matrix 7.7.3 Linearization 7.7.4 Quality of Sensitivity Matrix 7.8 Inverse Problem of EIT 7.8.1 Inverse Problem of RC Circuit 7.8.2 Formulation of EIT Inverse Problem 7.8.3 Ill-posedness of EIT Inverse Problem 7.9 Static Imaging 7.9.1 Iterative Data Fitting Method 7.9.2 Static Imaging using 4-channel EIT System 7.9.3 Regularization 7.9.4 Technical Difficulty of Static Imaging 7.10 Time-difference Imaging 7.10.1 Data Sets for Time-difference Imaging 7.10.2 Equivalent Homogeneous Admittivity 7.10.3 Linear Time-difference Algorithm using Sensitivity Matrix 7.10.4 Interpretation of Time-difference Image 7.11 Frequency-difference Imaging 7.11.1 Data Sets for Frequency-difference Imaging 7.11.2 Simple Difference Ft,ω2− Ft,ω1 7.11.3 Weighted Difference Ft,ω2− [alpha] Ft,ω1 7.11.4 Linear Frequency-difference Algorithm using Sensitivity Matrix 7.11.5 Interpretation of Frequency-difference Image References 8 Anomaly Estimation and Layer Potential Techniques 8.1 Harmonic Analysis and Potential Theory 8.1.1 Layer Potentials and Boundary Value Problems for Laplace Equation 8.1.2 Regularity for Solution of Elliptic Equation along Boundary of Inhomogeneity 8.2 Anomaly Estimation using EIT 8.2.1 Size Estimation Method 8.2.2 Location Search Method 8.3 Anomaly Estimation using Planar Probe 8.3.1 Mathematical Formulation 8.3.2 Representation Formula References 9 Magnetic Resonance Electrical Impedance Tomography 9.1 Data Collection using MRI 9.1.1 Measurement of Bz 9.1.2 Noise in Measured Bz Data 9.1.3 Measurement of B = (Bx,By,Bz) 9.2 Forward Problem and Model Construction 9.2.1 Relation between J , Bz and σ 9.2.2 Three Key Observations 9.2.3 Data Bz Traces σ∇u × e z-directional Change of σ 9.2.4 Mathematical Analysis toward MREIT Model 9.3 Inverse Problem Formulation using B or J 9.4 Inverse Problem Formulation using Bz 9.4.1 Model with Two Linearly Independent Currents 9.4.2 Uniqueness 9.4.3 Defected Bz Data in a Local Region 9.5 Image Reconstruction Algorithm 9.5.1 J-substitution Algorithm 9.5.2 Harmonic Bz Algorithm 9.5.3 Gradient Bz Decomposition and Variational Bz Algorithm 9.5.4 Local Harmonic Bz Algorithm 9.5.5 Sensitivity Matrix Based Algorithm 9.5.6 Anisotropic Conductivity Reconstruction Algorithm 9.5.7 Other Algorithms 9.6 Validation and Interpretation 9.6.1 Image Reconstruction Procedure using Harmonic Bz Algorithm 9.6.2 Conductivity Phantom Imaging 9.6.3 Animal Imaging 9.6.4 Human Imaging 9.7 Applications References 10 Magnetic Resonance Elastography 10.1 Representation of Physical Phenomena 10.1.1 Overview of Hooke's Law 10.1.2 Strain Tensor in Lagrangian Coordinates 10.2 Forward Problem and Model 10.3 Inverse Problem in MRE 10.4 Reconstruction Algorithms 10.4.1 Reconstruction of [mu] with the Assumption of Local Homogeneity 10.4.2 Reconstruction of [mu] without the Assumption of Local Homogeneity 10.4.3 Anisotropic Elastic Moduli Reconstruction 10.5 Technical Issues in MRE References. 330 $a"This book provides researchers and engineers in the imaging field with the skills they need to effectively deal with nonlinear inverse problems associated with different imaging modalities, including impedance imaging, optical tomography, elastography, and electrical source imaging. Focusing on numerically implementable methods, the book bridges the gap between theory and applications, helping readers tackle problems in applied mathematics and engineering. Complete, self-contained coverage includes basic concepts, models, computational methods, numerical simulations, examples, and case studies. Provides a step-by-step progressive treatment of topics for ease of understanding. Discusses the underlying physical phenomena as well as implementation details of image reconstruction algorithms as prerequisites for finding solutions to non linear inverse problems with practical significance and value. Includes end of chapter problems, case studies and examples with solutions throughout the book. Companion website will provide further examples and solutions, experimental data sets, open problems, teaching material such as PowerPoint slides and software including MATLAB m files. Essential reading for Graduate students and researchers in imaging science working across the areas of applied mathematics, biomedical engineering, and electrical engineering and specifically those involved in nonlinear imaging techniques, impedance imaging, optical tomography, elastography, and electrical source imaging"--$cProvided by publisher. 606 $aImage processing$xMathematics 606 $aCross-sectional imaging$xMathematics 606 $aInverse problems (Differential equations) 606 $aNonlinear theories 615 0$aImage processing$xMathematics. 615 0$aCross-sectional imaging$xMathematics. 615 0$aInverse problems (Differential equations) 615 0$aNonlinear theories. 676 $a621.367 676 $a621.3670151 700 $aSeo$b Jin Keun$01698198 701 $aWoo$b E. J$g(Eung Je)$01698199 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830155303321 996 $aNonlinear inverse problems in imaging$94079495 997 $aUNINA