LEADER 12011nam 2200685 450 001 9910830140103321 005 20231110214723.0 010 $a1-5231-5515-9 010 $a1-119-81097-3 010 $a1-119-81099-X 010 $a1-119-81098-1 035 $a(CKB)4940000000619375 035 $a(MiAaPQ)EBC6796385 035 $a(Au-PeEL)EBL6796385 035 $a(OCoLC)1285166641 035 $a(EXLCZ)994940000000619375 100 $a20220720d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFlow-induced vibration handbook for nuclear and process equipment /$fedited by Michel J. Pettigrew, Colette E. Taylor, Nigel J. Fisher 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d[2022] 210 4$dİ2022 215 $a1 online resource (494 pages) 225 1 $aWiley-ASME Press 300 $aIncludes index. 311 $a1-119-81096-5 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Contributors -- Chapter 1 Introduction and Typical Vibration Problems -- 1.1 Introduction -- 1.2 Some Typical Component Failures -- 1.3 Dynamics of Process System Components -- 1.3.1 Multi-Span Heat Exchanger Tubes -- 1.3.2 Other Nuclear and Process Components -- Notes -- References -- Chapter 2 Flow-Induced Vibration of Nuclear and Process Equipment: An Overview -- 2.1 Introduction -- 2.1.1 Flow-Induced Vibration Overview -- 2.1.2 Scope of a Vibration Analysis -- 2.2 Flow Calculations -- 2.2.1 Flow Parameter Definition -- 2.2.2 Simple Flow Path Approach -- 2.2.3 Comprehensive 3-D Approach -- 2.2.4 Two-Phase Flow Regime -- 2.3 Dynamic Parameters -- 2.3.1 Hydrodynamic Mass -- 2.3.2 Damping -- 2.4 Vibration Excitation Mechanisms -- 2.4.1 Fluidelastic Instability -- 2.4.2 Random Turbulence Excitation -- 2.4.3 Periodic Wake Shedding -- 2.4.4 Acoustic Resonance -- 2.4.5 Susceptibility to Resonance -- 2.5 Vibration Response Prediction -- 2.5.1 Fluidelastic Instability -- 2.5.2 Random Turbulence Excitation -- 2.5.3 Periodic Wake Shedding -- 2.5.4 Acoustic Resonance -- 2.5.5 Example of Vibration Analysis -- 2.6 Fretting-Wear Damage Considerations -- 2.6.1 Fretting-Wear Assessment -- 2.6.2 Fretting-Wear Coefficients -- 2.6.3 Wear Depth Calculations -- 2.7 Acceptance Criteria -- 2.7.1 Fluidelastic Instability -- 2.7.2 Random Turbulence Excitation -- 2.7.3 Periodic Wake Shedding -- 2.7.4 Tube-to-Support Clearance -- 2.7.5 Acoustic Resonance -- 2.7.6 Two-Phase Flow Regimes -- Note -- References -- Chapter 3 Flow Considerations -- 3.1 Definition of the Problem -- 3.2 Nature of the Flow -- 3.2.1 Introduction -- 3.2.2 Flow Parameter Definitions -- 3.2.3 Vertical Bubbly Flow -- 3.2.4 Flow Around Bluff Bodies -- 3.2.5 Shell-Side Flow in Tube Bundles. 327 $a3.2.6 Air-Water versus Steam-Water Flows -- 3.2.7 Effect of Nucleate Boiling Noise -- 3.2.8 Summary -- 3.3 Simplified Flow Calculation -- 3.4 Multi-Dimensional Thermalhydraulic Analysis -- 3.4.1 Steam Generator -- 3.4.2 Other Heat Exchangers -- Acronyms -- Nomenclature -- Subscripts -- Notes -- References -- Chapter 4 Hydrodynamic Mass, Natural Frequencies and Mode Shapes -- 4.1 Introduction -- 4.2 Total Tube Mass -- 4.2.1 Single-Phase Flow -- 4.2.2 Two-Phase Flow -- 4.3 Free Vibration Analysis of Straight Tubes -- 4.3.1 Free Vibration Analysis of a Single-Span Tube -- 4.3.2 Free Vibration Analysis of a Two-Span Tube -- 4.3.3 Free Vibration Analysis of a Multi-Span Tube -- 4.4 Basic Theory for Curved Tubes -- 4.4.1 Theory of Curved Tube In-Plane Free Vibration -- 4.4.2 Theory of Curved Tube Out-of-Plane Free Vibration -- 4.5 Free Vibration Analysis of U-Tubes -- 4.5.1 Setting Boundary Conditions for the In-Plane Free Vibration Analysis of U-Tubes Possessing Geometric Symmetry -- 4.5.2 Development of the In-Plane Eigenvalue Matrix for a Symmetric U-Tube -- 4.5.3 Generation of Eigenvalue Matrices for Out-of-Plane Free Vibration Analysis of U-Tubes Possessing Geometric Symmetry -- 4.5.4 Free Vibration Analysis of U-Tubes Which Do Not Possess Geometric Similarity -- 4.6 Concluding Remarks -- Nomenclature -- References -- Chapter 5 Damping of Cylindrical Structures in Single-Phase Fluids -- 5.1 Introduction -- 5.2 Energy Dissipation Mechanisms -- 5.3 Approach -- 5.4 Damping in Gases -- 5.4.1 Effect of Number of Supports -- 5.4.2 Effect of Frequency -- 5.4.3 Vibration Amplitude -- 5.4.4 Effect of Diameter or Mass -- 5.4.5 Effect of Side Loads -- 5.4.6 Effect of Higher Modes -- 5.4.7 Effect of Support Thickness -- 5.4.8 Effect of Clearance -- 5.5 Design Recommendations for Damping in Gases -- 5.6 Damping in Liquids -- 5.6.1 Tube-to-Fluid Viscous Damping. 327 $a5.6.2 Damping at the Supports -- 5.6.3 Squeeze-Film Damping -- 5.6.4 Damping due to Sliding -- 5.6.5 Semi-Empirical Formulation of Tube-Support Damping -- 5.7 Discussion -- 5.8 Design Recommendations for Damping in Liquids -- 5.8.1 Simple Criterion Based on Available Data -- 5.8.2 Criterion Based on the Formulation of Energy Dissipation Mechanisms -- Nomenclature -- Subscript -- References -- Chapter 6 Damping of Cylindrical Structures in Two-Phase Flow -- 6.1 Introduction -- 6.2 Sources of Information -- 6.3 Approach -- 6.4 Two-Phase Flow Conditions -- 6.4.1 Definition of Two-Phase Flow Parameters -- 6.4.2 Flow Regime -- 6.5 Parametric Dependence Study -- 6.5.1 Effect of Flow Velocity -- 6.5.2 Effect of Void Fraction -- 6.5.3 Effect of Confinement -- 6.5.4 Effect of Tube Mass -- 6.5.5 Effect of Tube Vibration Frequency -- 6.5.6 Effect of Tube Bundle Configuration -- 6.5.7 Effect of Motion of Surrounding Tubes -- 6.5.8 Effect of Flow Regime -- 6.5.9 Effect of Fluid Properties -- 6.6 Development of Design Guidelines -- 6.7 Discussion -- 6.7.1 Damping Formulation -- 6.7.2 Two-Phase Damping Mechanisms -- 6.8 Summary Remarks -- Nomenclature -- Subscripts -- Note -- References -- Chapter 7 Fluidelastic Instability of Tube Bundles in Single-Phase Flow -- 7.1 Introduction -- 7.2 Nature of Fluidelastic Instability -- 7.3 Fluidelastic Instability: Analytical Modelling -- 7.4 Fluidelastic Instability: Semi-Empirical Models -- 7.5 Approach -- 7.6 Important Definitions -- 7.6.1 Tube Bundle Configurations -- 7.6.2 Flow Velocity Definition -- 7.6.3 Critical Velocity for Fluidelastic Instability -- 7.6.4 Damping -- 7.6.5 Tube Frequency -- 7.7 Parametric Dependence Study -- 7.7.1 Flexible versus Rigid Tube Bundles -- 7.7.2 Damping -- 7.7.3 Pitch-to-Diameter Ratio, P/D -- 7.7.4 Fluidelastic Instability Formulation -- 7.8 Development of Design Guidelines. 327 $a7.9 In-Plane Fluidelastic Instability -- 7.10 Axial Flow Fluidelastic Instability -- 7.11 Concluding Remarks -- Nomenclature -- Subscript -- References -- Chapter 8 Fluidelastic Instability of Tube Bundles in Two-Phase Flow -- 8.1 Introduction -- 8.2 Previous Research -- 8.2.1 Flow-Induced Vibration in Two-Phase Axial Flow -- 8.2.2 Flow-Induced Vibration in Two-Phase Cross Flow -- 8.2.3 Damping Studies -- 8.3 Fluidelastic Instability Mechanisms in Two-Phase Cross Flow -- 8.4 Fluidelastic Instability Experiments in Air-Water Cross Flow -- 8.4.1 Initial Experiments in Air-Water Cross Flow -- 8.4.2 Behavior in Intermittent Flow -- 8.4.3 Effect of Bundle Geometry -- 8.4.4 Flexible versus Rigid Tube Bundle Behavior -- 8.4.5 Hydrodynamic Coupling -- 8.5 Analysis of the Fluidelastic Instability Results -- 8.5.1 Defining Critical Mass Flux and Instability Constant -- 8.5.2 Comparison with Results of Other Researchers -- 8.5.3 Summary of Air-Water Tests -- 8.6 Tube Bundle Vibration in Two-Phase Freon Cross Flow -- 8.6.1 Introductory Remarks -- 8.6.2 Background Information -- 8.6.3 Experiments in Freon Cross Flow -- 8.7 Freon Test Results and Discussion -- 8.7.1 Results and Analysis -- 8.7.2 Proposed Explanations -- 8.7.3 Concluding Remarks -- 8.7.4 Summary Findings -- 8.8 Fluidelastic Instability of U-Tubes in Air-Water Cross Flow -- 8.8.1 Experimental Considerations -- 8.8.2 U-Tube Dynamics -- 8.8.3 Vibration Response -- 8.8.4 Out-of-Plane Vibration -- 8.8.5 In-Plane Vibration -- 8.9 In-Plane (In-Flow) Fluidelastic Instability -- 8.9.1 In-Flow Experiments in a Wind Tunnel -- 8.9.2 In-Flow Experiments in Two-Phase Cross Flow -- 8.9.3 Single-Tube Fluidelastic Instability Results -- 8.9.4 Single Flexible Column and Central Cluster Fluidelastic Instability Results -- 8.9.5 Two Partially Flexible Columns. 327 $a8.9.6 In-Flow Fluidelastic Instability Results and Discussion. -- 8.10 Design Recommendations -- 8.10.1 Design Guidelines -- 8.10.2 Fluidelastic Instability with Intermittent Flow -- 8.11 Fluidelastic Instability in Two-Phase Axial Flow -- 8.12 Concluding Remarks -- Nomenclature -- Subscripts -- Note -- References -- Chapter 9 Random Turbulence Excitation in Single-Phase Flow -- 9.1 Introduction -- 9.2 Theoretical Background -- 9.2.1 Equation of Motion -- 9.2.2 Derivation of the Mean-Square Response -- 9.2.3 Simplification of Tube Vibration Response -- 9.2.4 Integration of the Transfer Function -- 9.2.5 Use of the Simplified Expression in Developing Design Guidelines -- 9.3 Literature Search -- 9.4 Approach Taken -- 9.5 Discussion of Parameters -- 9.5.1 Directional Dependence (Lift versus Drag) -- 9.5.2 Bundle Orientation -- 9.5.3 Pitch-to-Diameter Ratio (P/D) -- 9.5.4 Upstream Turbulence -- 9.5.5 Fluid Density (Gas versus Liquid) -- 9.5.6 Summary -- 9.6 Design Guidelines -- 9.7 Random Turbulence Excitation in Axial Flow -- Nomenclature -- References -- Chapter 10 Random Turbulence Excitation Forces Due to Two-Phase Flow -- 10.1 Introduction -- 10.2 Background -- 10.3 Approach Taken to Data Reduction -- 10.4 Scaling Factor for Frequency -- 10.4.1 Definition of a Velocity Scale -- 10.4.2 Definition of a Length Scale -- 10.4.3 Dimensionless Reduced Frequency -- 10.4.4 Effect of Frequency -- 10.5 Scaling Factor for Power Spectral Density -- 10.5.1 Effect of Flow Regime -- 10.5.2 Effect of Void Fraction -- 10.5.3 Effect of Mass Flux -- 10.5.4 Effect of Tube Diameter -- 10.5.5 Effect of Correlation Length -- 10.5.6 Effect of Bundle and Tube-Support Geometry -- 10.5.7 Effect of Two-Phase Mixture -- 10.5.8 Effect of Nucleate Boiling -- 10.6 Dimensionless Power Spectral Density -- 10.7 Upper Bounds for Two-Phase Cross Flow Dimensionless Spectra. 327 $a10.7.1 Bubbly Flow. 330 $a"Flow-induced vibration is the term for the phenomena of vibration and noise that is caused by fluid flow. Excessive flow-induced vibrations can cause fatigue or failure in process and plant equipment, which can in turn lead to operational disruptions, lost production, and costly repairs. Mechanical engineers can help avoid these issues by performing a flow-induced vibration analysis during the design phase of a project. Industries that employ plants with high capital costs, such as the nuclear, power, petrochemical, and aerospace industries, have a particular interest in understanding and mitigating flow-induced vibrations"--$cProvided by publisher. 410 0$aWiley-ASME Press 606 $aNuclear power plants$xPiping$xVibration 606 $aChemical plants$xPiping$xVibration 606 $aPressure vessels$xVibration 606 $aPressure vessels$xFluid dynamics 606 $aPiping$xFluid dynamics 606 $aHydrodynamics 615 0$aNuclear power plants$xPiping$xVibration. 615 0$aChemical plants$xPiping$xVibration. 615 0$aPressure vessels$xVibration. 615 0$aPressure vessels$xFluid dynamics. 615 0$aPiping$xFluid dynamics. 615 0$aHydrodynamics. 676 $a532.5 702 $aPettigrew$b M. J. 702 $aTaylor$b Colette E. 702 $aFisher$b N. J$g(Nigel John),$f1959- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830140103321 996 $aFlow-induced vibration handbook for nuclear and process equipment$93984763 997 $aUNINA