LEADER 05553nam 22007094a 450 001 9910830129403321 005 20170809164610.0 010 $a1-280-33960-8 010 $a9786610339600 010 $a0-470-01715-5 010 $a1-60119-497-8 010 $a0-470-01714-7 035 $a(CKB)1000000000357341 035 $a(EBL)244862 035 $a(OCoLC)71554132 035 $a(SSID)ssj0000071718 035 $a(PQKBManifestationID)11109942 035 $a(PQKBTitleCode)TC0000071718 035 $a(PQKBWorkID)10091563 035 $a(PQKB)11173417 035 $a(MiAaPQ)EBC244862 035 $a(PPN)241846838 035 $a(EXLCZ)991000000000357341 100 $a20050629d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDesigning indoor solar products$b[electronic resource] $ephotovoltaic technologies for AES /$fJulian F. Randall 210 $aHoboken, N.J. $cJ. Wiley & Sons$dc2005 215 $a1 online resource (199 p.) 300 $aDescription based upon print version of record. 311 $a0-470-01661-2 320 $aIncludes bibliographical references (p. [161]-172) and index. 327 $aDESIGNING INDOOR SOLAR PRODUCTS; Contents; About the Author; Preface; Acknowledgements; Introduction; 1 State of the Art; 1.1 Introduction; 1.2 Low-power Energy Sources; 1.3 Intellectual Property Rights; 1.3.1 Methodology; 1.3.2 Results; 1.3.3 Conclusion; 1.4 IPV Taxonomies; 1.4.1 Product Use Taxonomy; 1.4.2 Function (or Circuit) Taxonomy; 1.4.3 Radiant Energy Application Taxonomy; 1.4.4 Mean Energy Taxonomy; 1.5 IPV Gaps in Knowledge; 1.5.1 Radiant Energy Available; 1.5.2 PV Solar Cells; 1.5.3 Charge Storage; 1.5.4 Energy Source Guidelines; 1.5.5 Applications; 1.6 Conclusion 327 $a2 Engineering Design2.1 Introduction; 2.2 Defining Design; 2.3 Trends in Engineering Design; 2.4 Life Cycle Methods; 2.4.1 Introduction; 2.4.2 Definition; 2.4.3 LCA for IPV Designers; 2.4.4 LCA in IPV Design; 2.4.5 Designer Responsibility; 2.4.6 Summary; 2.5 Conclusion; 3 Radiant Energy Indoors; 3.1 Introduction; 3.2 Physics of Buildings; 3.2.1 Radiant Energy; 3.2.2 Radiant Energy Spectra; 3.2.3 Basic Optical Parameters; 3.3 Photometric Characterisation; 3.3.1 Characterisation Methodology Issues; 3.3.2 Daylight Factor; 3.3.3 Nearby Obstacle Aspect Ratio; 3.3.4 Glazing/Floor Ratio 327 $a3.3.5 Lighting Recommendations3.4 Radiometric Characterisations; 3.4.1 Obstacles; 3.4.2 Window Transmission; 3.4.3 IPV Location; 3.4.4 IPV Cell Orientation; 3.4.5 Further Profiles: Buildings, Users and Applications; 3.5 Computer Simulation; 3.6 Discussion; 3.6.1 Summary of Parameters; 3.6.2 IPV Designer Recommendations; 3.7 Conclusion; 3.8 Future Work; 3.9 Further Reading; 4 Fundamentals of Solar Cells; 4.1 Introduction; 4.2 Brief History of Solar Collectors and PV; 4.2.1 The 'Selenium Years'; 4.2.2 The 'Silicon Years'; 4.2.3 History of IPV; 4.2.4 IPV Today; 4.3 Photonic Semiconductors 327 $a4.3.1 What is a Semiconductor?4.3.2 Photonic Semiconductor Properties; 4.3.3 Solar Cell Categories; 4.4 Photovoltaic Technology; 4.4.1 Electrical Efficiency Calculation; 4.4.2 Fill Factor; 4.4.3 Short-circuit Current; 4.4.4 Open-circuit Voltage; 4.4.5 Power Curve; 4.5 Suboptimal Solar Cell Efficiency; 4.5.1 Optical Issues; 4.5.2 Material Quality Issues; 4.5.3 Parasitic Resistance; 4.5.4 Efficiency Losses Summary; 4.6 IPV Material Technologies; 4.6.1 Spectral Response; 4.6.2 Amorphous Silicon Thin Film; 4.6.3 Polycrystalline Thin Film; 4.6.4 Conventional Silicon Cell 327 $a4.6.5 Other PV Technologies4.6.6 Thin-film Modules; 4.7 Efficiency Improvements; 4.7.1 Current and I(SC); 4.7.2 Voltage and V(OC); 4.7.3 Fill Factor; 4.7.4 Concentration; 4.8 Conclusion; 4.9 Further Reading; 5 Solar Cells for Indoor Use; 5.1 Introduction; 5.2 Technology Performance at Indoor Light Levels; 5.2.1 Experimental Procedure; 5.2.2 Results; 5.2.3 Efficiency with Intensity; 5.2.4 Spectral Response; 5.3 Indoor Light Level Model Presentation; 5.3.1 Phenomenological Model; 5.3.2 Heuristic Model; 5.3.3 Technology-specific Models; 5.4 Discussion; 5.5 Designing PV Modules for Indoor Use 327 $a5.5.1 Transparent Conductive Oxide 330 $aPhotovoltaic technology - or the direct conversion of light into electricity - is the fastest growing means of electricity generation today, however it is generally used outdoors. Relatively little attention has been focused on the many obstacles to overcome when designing efficient indoor products. As a result, indoor products are more often than not limited to low power. Designing Indoor Solar Products bridges this gap by showing where AES (Ambient Energy Systems) based on photovoltaic cells may be used for higher power devices. Motivated by both financial and ecological arguments, 606 $aSolar cells 606 $aPhotovoltaic power generation 606 $aSustainable buildings 606 $aBuildings$xElectric equipment 606 $aEnergy conservation 615 0$aSolar cells. 615 0$aPhotovoltaic power generation. 615 0$aSustainable buildings. 615 0$aBuildings$xElectric equipment. 615 0$aEnergy conservation. 676 $a621.31/244 676 $a621.31224 700 $aRandall$b Julian F$0964260 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830129403321 996 $aDesigning indoor solar products$92187063 997 $aUNINA