LEADER 03989nam 2200409 450 001 9910830052303321 005 20230415235430.0 010 $a1-394-19219-3 010 $a1-394-19217-7 035 $a(MiAaPQ)EBC7153095 035 $a(Au-PeEL)EBL7153095 035 $a(CKB)25610142800041 035 $a(EXLCZ)9925610142800041 100 $a20230415d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDesign and construction of bioclimatic wooden greenhouses$hVolume 4 $earchitectural integration and quantitative analyses /$fGian Luca Brunetti 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE, Ltd. :$cJohn Wiley & Sons, Incorporated,$d[2023] 210 4$dİ2023 215 $a1 online resource (351 pages) 311 08$aPrint version: Brunetti, Gian Luca Design and Construction of Bioclimatic Wooden Greenhouses, Volume 4 Newark : John Wiley & Sons, Incorporated,c2023 9781786308542 327 $aCover -- Title Page -- Copyright Page -- Contents -- Introduction -- Chapter 1. Greenhouse Typologies -- 1.1. Stand-alone greenhouse typologies -- 1.1.1. At the core of the stand-alone solar greenhouse conception -- 1.1.2. Cold frames -- 1.1.3. Solar pit greenhouses -- 1.1.4. Tall stand-alone greenhouses -- 1.1.5. "Non-solar" stand-alone greenhouses -- 1.2. Greenhouses serving buildings -- 1.2.1. Integrating the direct gain strategy -- 1.2.2. Integrating the indirect gain scheme from attached solar greenhouses -- 1.2.3. Atria -- 1.2.4. Greenhouses as buffer spaces -- 1.2.5. The house-in-greenhouse scheme -- 1.2.6. Solutions using the ground as primary thermal storage -- 1.3. Additional readings -- Chapter 2. Calculation Approaches -- 2.1. Thermal calculations -- 2.1.1. Calculation of the heat transmission through an opaque panel -- 2.1.2. Determination of the average temperature of a greenhouse in steady state -- 2.1.3. A simplified calculation method of the steady-state temperature in a stand-alone solar greenhouse (experimental) -- 2.1.4. Thermal flux through an indirect solar gain system like a solar wall -- 2.1.5. Thermal flux through an attached greenhouse -- 2.2. Computer simulation as a calculation approach -- 2.3. Environmental simulation by means of open-source tools -- 2.3.1. Basic thermal modeling and simulation criteria -- 2.4. Structural calculations -- 2.4.1. Preliminary structural sizing -- 2.4.2. Preliminary structural sizing with open-source simulation tools -- 2.4.3. Techniques for exploring the design options on the basis of the simulated performances -- 2.4.4. Metamodeling -- Chapter 3. Design Studies -- 3.1. What is still to be said in greenhouse design -- 3.2. Calimali's greenhouse in Fagnano Olona, Italy. By Greenhouse Design Workshop -- 3.3. House "D" in Nantes. Xavier Fouquet. 327 $a3.4. Bioclimatic house in Villeneuve-Tolosane, France - Nycholas Eydoux -- 3.5. House in Vals, Italy. Studio Albori -- 3.6. Rehabilitation and extension of the house "AT" in Fagnano Olona. Paolo Carlesso -- 3.7. Greenhouse from recycled windows at "Casamatta", Gurone, Malnate (Varese), Italy. Marta Robecchi -- 3.8. House "GdA" in Cairate, Italy. Paolo Carlesso -- 3.9. A conference greenhouse at Cascina Cuccagna in Milan -- Conclusion -- Afterword -- Appendices -- Appendix 1: Thermal and Acoustic Properties of Construction Materials -- Appendix 2: Strength of Timber According to the Norm EN 338 -- Appendix 3: Properties of Transparent Materials -- References -- Index -- Summaries of other volumes -- EULA. 606 $aGreenhouses$xDesign and construction 615 0$aGreenhouses$xDesign and construction. 676 $a728.96 700 $aBrunetti$b Gian Luca$0611482 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830052303321 996 $aDesign and construction of bioclimatic wooden greenhouses$93931122 997 $aUNINA