LEADER 01507cam--2200433---450- 001 990001116420203316 005 20110922103550.0 010 $a3-468-49446-7 035 $a000111642 035 $aUSA01000111642 035 $a(ALEPH)000111642USA01 035 $a000111642 100 $a20021216d1993----km-y0itay50------ba 101 0 $ager 102 $aDE 200 1 $aTypisch deutsch?$eArbeitsbuch zu Aspekten deutscher Mentalität$fHeinke Behal-Thomsen, Angelika Lundquist-Mog, Paul Mog 210 $aBerlin [etc.]$cLangenscheidt$d1993 215 $a144 p.$cill.$d27 cm 606 0 $aLingua tedesca$xManuali [per] Stranieri$2BNCF 676 $a438.24 700 1$aBEHAL-THOMSEN,$bHeinke$0554549 701 1$aLUNDQUIST-MOG,$bAngelika$0554550 701 1$aMOG,$bPaul$0554551 801 0$aIT$bsalbc$gISBD 912 $a990001116420203316 951 $aVII.2.D. 118(II T D 85)$b165112 L.M.$cVII.2.$d00094640 951 $aVII.2.D. 118a(II T D 85 BIS)$b165113 L.M.$cVII.2.$d00094645 951 $aVII.2.D. 118b(II T D 85 A)$b165114 L.M.$cVII.2.$d00094644 959 $aBK 969 $aUMA 979 $aMARIA$b10$c20021216$lUSA01$h1301 979 $aMARIA$b10$c20030219$lUSA01$h1036 979 $aRENATO$b90$c20030327$lUSA01$h1216 979 $aPATRY$b90$c20040406$lUSA01$h1717 979 $aCOPAT7$b90$c20050721$lUSA01$h0919 979 $aCOPAT7$b90$c20050721$lUSA01$h0921 979 $aANNAMARIA$b90$c20110922$lUSA01$h1035 996 $aTypisch deutsch$9981587 997 $aUNISA LEADER 01879nam 2200577 450 001 9910830049203321 005 20220504002310.0 010 $a3-527-69591-5 010 $a3-527-69588-5 010 $a3-527-69589-3 035 $a(CKB)3710000000686080 035 $a(EBL)4530211 035 $a(MiAaPQ)EBC4530211 035 $a(iGPub)WILEYB0033191 035 $a(EXLCZ)993710000000686080 100 $a20160531h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aAnimal models for human cancer $ediscovery and development of novel therapeutics /$fedited by Marianne I. Martic-Kehl and P. August Schubiger 205 $a1st ed. 210 1$aWeinheim, Germany :$cWiley-VCH,$d2016. 210 4$d©2016 215 $a1 online resource (313 p.) 225 1 $aMethods and Principles in Medicinal Chemistry ;$vVolume 69 300 $aDescription based upon print version of record. 311 $a3-527-33997-3 320 $aIncludes bibliographical references at the end of each chapters and index. 410 0$aMethods and principles in medicinal chemistry ;$vVolume 69. 606 $aCancer$xAnimal models 606 $aDisease Models, Animal 606 $aNeoplasms, Experimental 606 $aDrug Discovery 606 $aAnimal Experimentation$xethics 615 0$aCancer$xAnimal models. 615 12$aDisease Models, Animal. 615 12$aNeoplasms, Experimental. 615 22$aDrug Discovery. 615 2 $aAnimal Experimentation$xethics. 676 $a616.994027 702 $aMartic-Kehl$b Marianne I. 702 $aSchubiger$b P. August 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830049203321 996 $aAnimal models for human cancer$94087563 997 $aUNINA LEADER 03515nam 2200865z- 450 001 9910566467703321 005 20220506 035 $a(CKB)5680000000037703 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/81216 035 $a(oapen)doab81216 035 $a(EXLCZ)995680000000037703 100 $a20202205d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aRecent Advances in Single-Particle Tracking: Experiment and Analysis 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 online resource (238 p.) 311 08$a3-0365-3485-7 311 08$a3-0365-3486-5 330 $aThis Special Issue of Entropy, titled "Recent Advances in Single-Particle Tracking: Experiment and Analysis", contains a collection of 13 papers concerning different aspects of single-particle tracking, a popular experimental technique that has deeply penetrated molecular biology and statistical and chemical physics. Presenting original research, yet written in an accessible style, this collection will be useful for both newcomers to the field and more experienced researchers looking for some reference. Several papers are written by authorities in the field, and the topics cover aspects of experimental setups, analytical methods of tracking data analysis, a machine learning approach to data and, finally, some more general issues related to diffusion. 517 $aRecent Advances in Single-Particle Tracking 606 $aPhysics$2bicssc 606 $aResearch and information: general$2bicssc 610 $a3D single-particle tracking 610 $aanomalous diffusion 610 $aautocovariance function 610 $aBrownian particle 610 $aconfinement 610 $aCTRW 610 $adeep learning 610 $adiauxic growth 610 $adiffusing-diffusivity 610 $aendosomes 610 $aestimation 610 $afeature engineering 610 $aFisher information 610 $afractional Brownian motion 610 $aheterogeneous 610 $ainformation theory 610 $aintegro-differential equations 610 $amachine learning classification 610 $amesoscopic model 610 $aMonte Carlo simulations 610 $amultifractional Brownian motion 610 $aneural network 610 $anon-uniform illumination 610 $aoccupation time statistics 610 $aphase contrast image segmentation 610 $apower of the statistical test 610 $arandom walk 610 $areplicator equation 610 $aresidual neural networks 610 $asingle particle trajectory 610 $asingle pseudo-particle tracking 610 $asingle-particle tracking 610 $aSPT 610 $astatistical analysis 610 $astochastic processes 610 $astochastic thermodynamics 610 $atrajectory classification 610 $atrapping 610 $awound healing dynamics 615 7$aPhysics 615 7$aResearch and information: general 700 $aSzwabi?ski$b Janusz$4edt$01309621 702 $aWeron$b Aleksander$4edt 702 $aSzwabi?ski$b Janusz$4oth 702 $aWeron$b Aleksander$4oth 906 $aBOOK 912 $a9910566467703321 996 $aRecent Advances in Single-Particle Tracking: Experiment and Analysis$93029462 997 $aUNINA