LEADER 05331nam 2200637Ia 450 001 9910830040403321 005 20230617002933.0 010 $a1-280-24285-X 010 $a9786610242856 010 $a0-470-29707-7 010 $a0-470-85621-1 010 $a0-470-85620-3 035 $a(CKB)1000000000356090 035 $a(EBL)241167 035 $a(SSID)ssj0000265429 035 $a(PQKBManifestationID)11218029 035 $a(PQKBTitleCode)TC0000265429 035 $a(PQKBWorkID)10294929 035 $a(PQKB)10459393 035 $a(MiAaPQ)EBC241167 035 $a(OCoLC)85820694 035 $a(EXLCZ)991000000000356090 100 $a20031002d2005 fy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aUnlocking dynamical diversity$b[electronic resource] $eoptical feedback effects on semiconductor lasers /$fedited by Deborah M. Kane, K. Alan Shore 210 $aChichester $cJohn Wiley$dc2005 215 $a1 online resource (357 p.) 300 $aDescription based upon print version of record. 311 $a0-470-85619-X 320 $aIncludes bibliographical references and index. 327 $aUNLOCKING DYNAMICAL DIVERSITY; Contents; List of Contributors; Preface; Acknowledgements; 1 Introduction; 1.1 Semiconductor Laser Basics; 1.1.1 Semiconductor Laser Materials and Output Wavelengths; 1.1.2 Semiconductor Laser Structures; 1.1.3 Semiconductor Laser Gain and Output Power versus Injection Current; 1.1.4 Semiconductor Laser Relaxation Oscillations, Noise, Modulation and Linewidth Enhancement Factor; 1.2 Nonlinear Dynamical Systems; 1.3 Semiconductor Lasers with Optical Feedback; 1.4 Landmark Results: Theory and Experiment; 1.5 Overview of Feedback Response: Regimes I-V 327 $a1.6 Outline of ApplicationsReferences; 2 Theoretical Analysis; 2.1 Introduction; 2.2 Basic Model: Single Mode Lasers with Weak Optical Feedback; 2.3 Steady State Analysis of the Lang-Kobayashi Equations; 2.4 Multimode Iterative Analysis of the Dynamics of Laser Diodes Subject to Optical Feedback; 2.4.1 Dynamics of MultiMode Laser Diodes; 2.4.2 Steady State Solutions; 2.4.3 Comparison with Lang-Kobayashi Rate Equations; 2.5 Cavity Length Effects; 2.5.1 Long External Cavities; 2.5.2 Short External Cavities; 2.6 Coupled Cavity Analysis; 2.6.1 Theory; 2.6.2 Comparison with LK Analysis 327 $a2.6.3 Typical Results2.7 Conclusion; References; 3 Generalized Optical Feedback: Theory; 3.1 Varieties of Optical Feedback; 3.2 Compound-Cavity Analysis: Validity of Lang-Kobayashi Approach; 3.3 Filtered Optical Feedback; 3.3.1 External Cavity Modes; 3.3.2 Dynamics; 3.4 Phase-Conjugate Feedback; 3.4.1 Steady State; 3.4.2 Results of Stability Analysis for the Steady State; 3.4.3 High-Frequency Oscillations; 3.5 Conclusion; Acknowledgements; Note; References; 4 Experimental Observations; 4.1 Introduction; 4.2 Experimental Apparatus; 4.3 Extremely Weak Feedback Effects - Regime I 327 $a4.4 Very Weak Feedback Effects - Regime II4.5 Weak Feedback Effects - Regime III-IV; 4.6 Moderate Feedback Effects - Low Frequency Fluctuations; 4.7 Short Cavity Regime; 4.8 Double-Cavity Systems; 4.9 Multimode Effects; 4.10 Control; 4.11 Feedback and Modulation; 4.12 Phase Conjugate Feedback; 4.13 Conclusion; References; 5 Bifurcation Analysis of Lasers with Delay; 5.1 Introduction; 5.2 Bifurcation Theory of DDEs; 5.2.1 The Phase Space of a DDE; 5.2.2 Local Bifurcations of Steady States; 5.2.3 Local Bifurcations of Periodic Orbits; 5.2.4 Unstable Manifolds and Global Bifurcations 327 $a5.3 Numerical Methods5.3.1 Simulation by Direct Numerical Integration; 5.3.2 Numerical Continuation; 5.3.3 Computation of 1D Unstable Manifolds; 5.4 Bifurcations in the COF Laser; 5.4.1 Symmetry of the COF Laser Equation; 5.4.2 External Cavity Modes; 5.4.3 The Characteristic Equation of an ECM; 5.4.4 Continuation Near Connecting Bridges; 5.4.5 Global Bifurcations of ECMs; 5.5 Bifurcations in the PCF Laser; 5.5.1 Symmetry of the PCF Laser Equation; 5.5.2 Bifurcation Diagram Near the Locking Region; 5.5.3 Bifurcations of ECMs; 5.5.4 Break-up of a Torus and Crisis Bifurcation; 5.6 Conclusion 327 $aAcknowledgements 330 $aApplications of semiconductor lasers with optical feedback systems are driving rapid developments in theoretical and experimental research. The very broad wavelength-gain-bandwidth of semiconductor lasers combined with frequency-filtered, strong optical feedback create the tunable, single frequency laser systems utilised in telecommunications, environmental sensing, measurement and control. Those with weak to moderate optical feedback lead to the chaotic semiconductor lasers of private communication. This resource illustrates the diversity of dynamic laser states and the technological applicat 606 $aSemiconductor lasers 606 $aOptical communications 615 0$aSemiconductor lasers. 615 0$aOptical communications. 676 $a621.366 676 $a621.3661 701 $aKane$b Deborah M$01623323 701 $aShore$b K. Alan$01680439 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830040403321 996 $aUnlocking dynamical diversity$94049139 997 $aUNINA