LEADER 05256nam 2200481 450 001 9910830023803321 005 20231110221859.0 010 $a1-119-52517-9 010 $a1-119-52519-5 010 $a1-119-52521-7 035 $a(CKB)5590000000463856 035 $a(MiAaPQ)EBC6939784 035 $a(Au-PeEL)EBL6939784 035 $a(EXLCZ)995590000000463856 100 $a20221107d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectromagnetic metasurfaces $etheory and applications /$fChristophe Caloz, Karim Achouri 210 1$aHoboken, New Jersey :$cWiley-IEEE Press,$d[2021] 210 4$dİ2021 215 $a1 online resource (214 pages) 225 1 $aIEEE Press 311 $a1-119-52516-0 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Metamaterials -- 1.2 Emergence of Metasurfaces -- Chapter 2 Electromagnetic Properties of Materials -- 2.1 Bianisotropic Constitutive Relations -- 2.2 Temporal Dispersion -- 2.2.1 Causality and Kramers-Kronig Relations -- 2.2.2 Lorentz Oscillator Model -- 2.3 Spatial Dispersion -- 2.4 Lorentz Reciprocity Theorem -- 2.5 Poynting Theorem -- 2.6 Energy Conservation in Lossless-Gainless Systems -- 2.7 Classification of Bianisotropic Media -- Chapter 3 Metasurface Modeling -- 3.1 Effective Homogeneity -- 3.1.1 The Homogeneity Paradox -- 3.1.2 Theory of Periodic Structures -- 3.1.3 Scattering from Gratings -- 3.1.4 Homogenization -- 3.2 Effective Zero Thickness -- 3.3 Sheet Boundary Conditions -- 3.3.1 Impedance Modeling -- 3.3.2 Polarizability Modeling -- 3.3.3 Susceptibility Modeling -- 3.3.4 Comparisons Between the Models -- 3.3.4.1 Microscopic and Macroscopic Perspectives -- 3.3.4.2 Material Tensor Dimensions and Normal Polarizations -- 3.3.4.3 Uniform and Nonuniform Metasurfaces -- 3.3.4.4 Extension to Time?Varying or Nonlinear Systems -- Chapter 4 Susceptibility Synthesis -- 4.1 Linear Time?Invariant Metasurfaces -- 4.1.1 Basic Assumptions -- 4.1.2 Birefringent Metasurfaces -- 4.1.3 Multiple?Transformation Metasurfaces -- 4.1.4 Relations Between Susceptibilities and Scattering Parameters -- 4.1.5 Surface?Wave Eigenvalue Problem -- 4.1.5.1 Formulation of the Problem -- 4.1.5.2 Dispersion in a Symmetric Environment -- 4.1.6 Metasurfaces with Normal Polarizations -- 4.1.7 Illustrative Examples -- 4.1.7.1 Polarization Rotation -- 4.1.7.2 Multiple Nonreciprocal Transformations -- 4.1.7.3 Angle?Dependent Transformations -- 4.2 Time?Varying Metasurfaces -- 4.2.1 Formulation of the Problem -- 4.2.2 Harmonic?Generation Time?Varying Metasurface. 327 $a4.3 Nonlinear Metasurfaces -- 4.3.1 Second?Order Nonlinearity -- 4.3.1.1 Frequency?Domain Approach -- 4.3.1.2 Time?Domain Approach -- Chapter 5 Scattered Field Computation -- 5.1 Fourier?Based Propagation Method -- 5.2 Finite?Difference Frequency?Domain Method -- 5.3 Finite?Difference Time?Domain Method -- 5.3.1 Time?Varying Dispersionless Metasurfaces -- 5.3.2 Time?Varying Dispersive Metasurfaces -- 5.4 Spectral?Domain Integral Equation Method -- Chapter 6 Practical Implementation -- 6.1 General Implementation Procedure -- 6.2 Basic Strategies for Full?Phase Coverage -- 6.2.1 Linear Polarization -- 6.2.1.1 Metallic Scattering Particles -- 6.2.1.2 Dielectric Scattering Particles -- 6.2.2 Circular Polarization -- 6.3 Full?Phase Coverage with Perfect Matching -- 6.4 Effects of Symmetry Breaking -- 6.4.1 Angular Scattering -- 6.4.2 Polarization Conversion -- Chapter 7 Applications -- 7.1 Angle?Independent Transformation -- 7.2 Perfect Matching -- 7.3 Generalized Refraction -- 7.3.1 Limitations of Conventional Synthesis Methods -- 7.3.2 Perfect Refraction Using Bianisotropy -- Chapter 8 Conclusions -- Chapter 9 Appendix -- 9.1 Approximation of Average Fields at an Interface -- 9.2 Fields Radiated by a Sheet of Dipole Moments -- 9.3 Relations Between Susceptibilities and Polarizabilities -- References -- Index -- EULA. 330 $a"This book introduces fundamental principles as well as applications of metasurfaces, i.e. electromagnetically thin structures manipulating EM wave propagation. The authors describe the precursors and history of metasurfaces before moving on to explore the physical insights that can be gained from the material parameters of the metasurface. They also present how to compute the fields scattered by a metasurface, with known material parameters, being illuminated by an arbitrary incident field, as well as how to realize a practical metasurface and relate it its material parameters to physical structures.The book finishes with a discussion of the future of the field"--$cProvided by publisher. 410 0$aIEEE Press 606 $aMetasurfaces 615 0$aMetasurfaces. 676 $a620.11267 700 $aAchouri$b Karim$01653802 702 $aCaloz$b Christophe$f1969- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830023803321 996 $aElectromagnetic metasurfaces$94005279 997 $aUNINA