LEADER 05517nam 2200649 450 001 9910830011803321 005 20230721005739.0 010 $a1-118-62297-9 010 $a1-282-16537-2 010 $a9786612165375 010 $a0-470-61162-6 010 $a0-470-39426-9 035 $a(CKB)2550000000005872 035 $a(EBL)477660 035 $a(OCoLC)520990468 035 $a(SSID)ssj0000335246 035 $a(PQKBManifestationID)11256964 035 $a(PQKBTitleCode)TC0000335246 035 $a(PQKBWorkID)10273097 035 $a(PQKB)11578270 035 $a(MiAaPQ)EBC477660 035 $a(MiAaPQ)EBC4433291 035 $a(EXLCZ)992550000000005872 100 $a20180809h20092007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBipedal robots $emodeling, design and walking synthesis /$fedited by Christine Chevallereau (and three others) 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2009. 210 4$dİ2007 215 $a1 online resource (338 p.) 225 1 $aControl systems, robotics and manufacturing series. ;$vv.78 300 $a"First published in France in 2007 by Herme?s Science/Lavoisier entitled 'Robots marcheurs bipe?des : mode?lisation, conception, synthe?se de la marche'" --T.p. verso. 311 $a1-84821-076-0 320 $aIncludes bibliographical references and index. 327 $aBipedal Robots: Modeling, Design and Walking Synthesis; Table of Contents; Chapter 1. Bipedal Robots and Walking; 1.1. Introduction; 1.2. Biomechanical approach; 1.2.1. Biomechanical system: a source of inspiration; 1.2.2. Skeletal structure and musculature; 1.3. Human walking; 1.3.1. Architecture; 1.3.2. Walking and running trajectory data; 1.3.3. Study cases; 1.4. Bipedal walking robots: state of the art; 1.4.1. A brief history; 1.4.2. Japanese studies and creations; 1.4.3. The situation in France; 1.4.4. General evolution tendencies; 1.5. Different applications; 1.5.1. Service robotics 327 $a1.5.2. Robotics and dangerous terrains1.5.3. Toy robots and computer animation in cinema; 1.5.4. Defense robotics; 1.5.5. Medical prostheses; 1.5.6. Surveillance robots; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Kinematic and Dynamic Models for Walking; 2.1. Introduction; 2.2. The kinematics of walking; 2.2.1. DoF of the locomotion system; 2.2.2. Walking patterns; 2.2.3. Generalized coordinates for a sagittal step; 2.2.4. Generalized coordinates for three-dimensional walking; 2.2.5. Transition conditions; 2.3. The dynamics of walking; 2.3.1. Lagrangian dynamic model 327 $a2.3.2. Newton-Euler's dynamic model2.3.3. Impact model; 2.4. Dynamic constraints; 2.4.1. CoP and equilibrium constraints; 2.4.2. Non-sliding constraints; 2.5. Complementary feasibility constraints; 2.5.1. Respecting the technological limitations; 2.5.2. Non-collision constraints; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. Design Tools for Making Bipedal Robots; 3.1. Introduction; 3.2. Study of influence of robot body masses; 3.2.1. Case 1: the three-link robot; 3.2.2. Case 2: the five-link robot; 3.3. Mechanical design: the architectures carried out; 3.3.1. The structure of planar robots 327 $a3.3.2. 3D robot structures3.3.3. Technology of inter-body joints; 3.3.4. Drive technology; 3.4. Actuators; 3.4.1. Actuator types; 3.4.2. Characteristics of electric actuators; 3.4.3. Elements of choice for robotic actuators; 3.4.4. Comparing actuator performances; 3.4.5. Performances of transmission-actuator associations; 3.5. Sensors; 3.5.1. Measuring; 3.5.2. Frequently used sensors; 3.5.3. Characteristics and integration; 3.5.4. Sensors of inertial localization; 3.6. Conclusion; 3.7. Appendix; 3.7.1. Geometric model; 3.7.2. Dynamic model; 3.8. Bibliography 327 $aChapter 4. Walking Pattern Generators4.1. Introduction; 4.2. Passive and quasi-passive dynamic walking; 4.2.1. Passive walking; 4.2.2. Quasi-passive dynamic walking; 4.3. Static balance walking; 4.4. Dynamic synthesis of walking; 4.4.1. Performance criteria for walking synthesis; 4.4.2. Formalizing the problem of dynamic optimization; 4.5. Walking synthesis via parametric optimization; 4.5.1. Approximating the control variables; 4.5.2. Parameterizing the configuration variables; 4.5.3. Parameterizing the Lagrange multipliers; 4.5.4. Formulation of the parametric optimization problem 327 $a4.5.5. A parametric optimization example 330 $aThis book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, such 410 0$aControl systems, robotics and manufacturing series. 606 $aRobots$xMotion 615 0$aRobots$xMotion. 676 $a629.8/932 676 $a629.892 702 $aChevallereau$b Christine 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830011803321 996 $aBipedal robots$94040234 997 $aUNINA