LEADER 06456nam 2200745 a 450 001 9910829991903321 005 20170815164901.0 010 $a1-118-58634-4 010 $a1-118-58622-0 010 $a1-118-58629-8 010 $a1-299-18695-5 035 $a(CKB)2550000001005875 035 $a(EBL)1124316 035 $a(SSID)ssj0000833625 035 $a(PQKBManifestationID)11529303 035 $a(PQKBTitleCode)TC0000833625 035 $a(PQKBWorkID)10936202 035 $a(PQKB)10550264 035 $a(MiAaPQ)EBC1124316 035 $a(CaSebORM)9781118586341 035 $a(OCoLC)828298976 035 $a(EXLCZ)992550000001005875 100 $a20091023d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMeasurements using optic and RF waves$b[electronic resource] /$fedited by Fre?de?rique de Fornel, Pierre-Noe?l Favennec 205 $a1st edition 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2010 215 $a1 online resource (330 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-187-2 320 $aIncludes bibliographical references and index. 327 $aCover; Measurements using Optic and RF Waves; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Electromagnetic Environment; 1.1. Electromagnetic radiation sources; 1.1.1. Optical sources; 1.1.2. Radioelectric sources; 1.1.3. Indoor and outdoor electric wires; 1.1.4. Fields resulting from all the emissions; 1.2. Electromagnetic fields; 1.3. Bibliography; Chapter 2. From Measurement to Control of Electromagnetic Wavesusing a Near-field Scanning Optical Microscope; 2.1. Introduction; 2.2. Principle of the measurement using a local probe; 2.2.1. Overcoming Rayleigh's limit 327 $a2.2.2. Classification of the experimental set-up2.2.3. Probe motion above a sample; 2.2.4. Aperture microscope in collection mode under constant distance mode; 2.3. Measurement of the electromagnetic field distribution inside nanophotonic components; 2.3.1. W1 photonic crystal waveguide; 2.3.2. Photonic crystal microcavity; 2.4. Measuring the amplitude and phase in optical near-field; 2.5. Active optical near-field microscopy; 2.6. Conclusion; 2.7. Acknowledgements; 2.8. Bibliography; Chapter 3. Meteorological Visibility Measurement: MeteorologicalOptical Range; 3.1. Introduction 327 $a3.2. Definitions3.3. Atmospheric composition; 3.3.1. Gaseous composition; 3.3.2. Aerosols; 3.4. Atmospheric effects on light propagation; 3.4.1. Atmospheric absorption; 3.4.2. Atmospheric scattering; 3.4.3. Extinction and total spectral transmission; 3.5. Units and scales; 3.6. Measurement methods; 3.6.1. Visual estimation of the meteorological optical range; 3.6.2. Meteorological optical range measurement instruments; 3.6.3. Exposure and implantation of instruments; 3.7. Visibility perturbation factors; 3.8. Applications; 3.8.1. Meteorology applications; 3.8.2. Aeronautic applications 327 $a3.8.3. Free space optic telecommunications applications3.8.4. Automative safety applications; 3.9. Appendix - optical contrast and Koschmieder's law; 3.10. Glossary; 3.11. Bibliography; Chapter 4. Low Coherence Interferometry; 4.1. Introduction; 4.2. Phase measurement; 4.2.1. Low coherence interferometry; 4.2.2. Optical frequency domain reflectometry (OFDR); 4.3. Metrology considerations; 4.3.1. Wavelength; 4.3.2. Relative group delay; 4.3.3. Chromatic dispersion; 4.4. Applications; 4.4.1. Characterization of photonic crystal fibers; 4.4.2. Amplifying fiber characterization 327 $a4.4.3. Local characterization of fiber Bragg gratings4.4.4. Strain and temperature sensors; 4.5. Conclusion; 4.6. Bibliography; Chapter 5. Passive Remote Sensing at Submillimeter Wavelengthsand THz; 5.1. Introduction; 5.1.1. Earth atmosphere and the radioelectric spectrum; 5.1.2. Application fields of heterodyne detection; 5.2. Submillimeter-THz low noise heterodyne receivers; 5.2.1. Mixers with AsGa Schottky diodes; 5.2.2. Mixers with superconductors (SIS, HEB); 5.2.3. Local oscillator sources; 5.3. Submillimeter - THz applications for astronomy andastrophysics 327 $a5.3.1. Airborne or stratospheric balloon observatories 330 $aScientific and technical knowledge for measurements in modern electromagnetism must be vast as our electromagnetic environment covers all frequencies and wavelengths. These measurements must be applied to fields as varied as nanotechnologies, telecommunications, meteorology, geolocalization, radioastronomy, health, biology, etc. In order to cover the multiple facets of the topic, this book sweeps the entire electromagnetic spectrum, from several hertz to terahertz; considers distances ranging from nanometers to light-years in optics; before extending towards the various measurement techniques using electromagnetic waves for various applications. This book describes these different facets in eleven chapters, each covering different domains of applications. This book on science and measurement techniques in electromagnetism, enables us to form a well informed opinion about: the variety of techniques and methods available to measure the characteristics of electromagnetic waves, in terms of the local field and phase for a broad field of frequencies; the determination of physical quantities such as distance, time, etc., using electromagnetic properties; finding new approaches for new requirements in the field of electromagnetic distribution in complex structures media, such as biological tissues and nanosciences. 410 0$aISTE 606 $aElectromagnetic measurements 606 $aFrequencies of oscillating systems$xMeasurement 606 $aRadio meteorology 606 $aRadio astronomy 615 0$aElectromagnetic measurements. 615 0$aFrequencies of oscillating systems$xMeasurement. 615 0$aRadio meteorology. 615 0$aRadio astronomy. 676 $a621.3 676 $a681.25 676 $a681/.25 700 $ade Fornel$b Frédérique$01697835 701 $aFornel$b Fre?de?rique de$f1953-$01697836 701 $aFavennec$b Pierre-Noe?l$01619811 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910829991903321 996 $aMeasurements using optic and RF waves$94078854 997 $aUNINA