LEADER 06547nam 22004093 450 001 9910829879803321 005 20231110221641.0 010 $a3-527-83520-2 010 $a3-527-83518-0 035 $a(MiAaPQ)EBC30671932 035 $a(Au-PeEL)EBL30671932 035 $a(EXLCZ)9927902417000041 100 $a20230804d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aOptical imaging and sensing $ematerials, devices, and applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2023. 210 4$dİ2023. 215 $a1 online resource (289 pages) 311 08$aPrint version: Wu, Jiang Optical Imaging and Sensing Newark : John Wiley & Sons, Incorporated,c2023 9783527349760 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction of Optical Imaging and Sensing: Materials, Devices, and Applications -- 1.1 Optoelectronic Material Systems -- 1.1.1 Si Platform -- 1.1.2 Two?dimensional Materials and Their van der Waals Heterostructures -- 1.1.2.1 Graphene -- 1.1.2.2 Transition Metal Dichalcogenides -- 1.1.2.3 2D Heterostructures -- 1.2 Challenges and Prospect of Nano?optoelectronic Devices -- 1.2.1 III-V Compounds -- 1.2.2 Perovskites -- 1.2.3 Organic Optoelectronic Materials -- References -- Chapter 2 2D Material?Based Photodetectors for Imaging -- 2.1 Introduction -- 2.2 Visible?Light Photodetectors -- 2.3 Infrared Photodetectors -- 2.4 Broadband Photodetectors -- 2.5 Plasmon?Enhanced Photodetectors -- 2.6 Large?Scale and Flexible Photodetectors -- 2.7 Summary -- References -- Chapter 3 Surface Plasmonic Resonance?Enhanced Infrared Photodetectors -- 3.1 Introduction -- 3.2 Brief Review of Basic Concepts of SPR and SPR Structures -- 3.2.1 Plasma Oscillations in Metals -- 3.2.2 Complex Permittivity and the Drude Model -- 3.2.3 Surface Plasmonic Waves at the Semi?infinite Dielectric and Metal Interface -- 3.2.4 Prism?Coupled Surface Plasmonic Wave Excitation -- 3.2.5 Surface Grating?Coupled Surface Plasmonic Wave Excitation -- 3.3 Surface Plasmonic Wave?Enhanced QDIPs -- 3.3.1 Two?Dimensional Metallic Hole Array (2DSHA)?Induced Surface Plasmonic Waves -- 3.3.2 2DSHA Surface Plasmonic Structure?Enhanced QDIP -- 3.4 Localized Surface Plasmonic Wave?Enhanced QDIPs -- 3.4.1 Localized Surface Plasmonic Waves -- 3.4.2 Near?Field Distributions -- 3.4.3 Nanowire Pair -- 3.4.4 Circular Disk Array for Broadband IR Photodetector Enhancement -- 3.5 Plasmonic Perfect Absorber (PPA) -- 3.5.1 Introduction to Plasmonic Perfect Absorber -- 3.5.2 Plasmonic Perfect Absorber?Enhanced QDIP. 327 $a3.5.3 Broadband Plasmonic Perfect Absorber -- 3.5.4 2DSHA Plasmonic Perfect Absorber -- 3.6 Chapter Summary -- References -- Chapter 4 Optical Resistance Switch for Optical Sensing -- 4.1 Introduction -- 4.2 Graphene Optical Switch -- 4.2.1 DC Mode of the Gate Capacitor -- 4.2.2 AC Mode of the Gate Capacitor -- 4.3 Nanomaterial Heterostructures?Based Switch -- 4.3.1 Situation 1: n2L?& -- gg -- n2H -- 4.3.2 Situation 2: n2H?& -- gg -- n2L -- 4.3.3 Situation 3: n2H???n2L -- 4.4 Modulation Characteristics -- 4.5 Summary -- References -- Chapter 5 Optical Interferometric Sensing -- 5.1 Introduction -- 5.2 Nonlinear Interferometer -- 5.2.1 Experimental Implementation of Phase Locking -- 5.2.2 Quantum Enhancement of Phase Sensitivity -- 5.2.3 Enhancement of Entanglement and Quantum Noise Cancellation -- 5.3 Other Types of Nonlinear Interferometers -- 5.3.1 Nonlinear Sagnac Interferometer -- 5.3.2 Hybrid Interferometer with a Nonlinear FWM Process and a Linear Beam?splitter -- 5.3.3 Experimental Implementation of a Phase?Sensitive Parametric Amplifier -- 5.3.4 Interference?Induced Quantum?Squeezing Enhancement -- 5.4 Nonlinear Interferometric SPR Sensing -- 5.5 Summary and Outlook -- References -- Chapter 6 Spatial?frequency?shift Super?resolution Imaging Based on Micro/nanomaterials -- 6.1 Introduction -- 6.2 The Principle of SFS Super?resolution Imaging Based on Micro/nanomaterials -- 6.3 Super?resolution Imaging Based on Nanowires and Polymers -- 6.4 Super?resolution Imaging Based on Photonic Waveguides -- 6.4.1 Label?free Super?resolution Imaging Based on Photonic Waveguides -- 6.4.2 Labeled Super?resolution Imaging Based on Photonic Waveguides -- 6.5 Super?resolution Imaging Based on Wafers -- 6.5.1 Principle of Super?resolution Imaging Based on Wafers -- 6.5.2 Label?free Super?resolution Imaging Based on Wafers. 327 $a6.5.3 Labeled Super?resolution Imaging Based on Wafers -- 6.6 Super?resolution Imaging Based on SPPs and Metamaterials -- 6.6.1 SPP?assisted Illumination Nanoscopy -- 6.6.1.1 Metal-Dielectric Multilayer Metasubstrate PSIM -- 6.6.1.2 Graphene?assisted PSIM -- 6.6.2 Localized Plasmon?assisted Illumination Nanoscopy -- 6.6.3 Metamaterial?assisted Illumination Nanoscopy -- 6.7 Summary and Outlook -- References -- Chapter 7 Monolithically Integrated Multi?section Semiconductor Lasers: Toward the Future of Integrated Microwave Photonics -- 7.1 Introduction -- 7.2 Monolithically Integrated Multi?section Semiconductor Laser (MI?MSSL) Device -- 7.2.1 Monolithically Integrated Optical Feedback Lasers (MI?OFLs) -- 7.2.1.1 Passive Feedback Lasers (PFLs) -- 7.2.1.2 Amplified/Active Feedback Lasers (AFLs) -- 7.2.2 Monolithically Integrated Mutually Injected Semiconductor Lasers (MI?MISLs) -- 7.3 Electro?optic Conversion Characteristics -- 7.3.1 Modulation Response Enhancement -- 7.3.2 Nonlinearity Reduction -- 7.3.3 Chirp Suppression -- 7.4 Photonic Microwave Generation -- 7.4.1 Tunable Single?Tone Microwave Signal Generation -- 7.4.1.1 Free?Running State -- 7.4.1.2 Mode?Beating Self?Pulsations (MB?SPs) -- 7.4.1.3 Period?One (P1) Oscillation -- 7.4.1.4 Sideband Injection Locking -- 7.4.2 Frequency?Modulated Microwave Signal Generation -- 7.4.3 High?Performance Microwave Signal Generation Optimizing Technique -- 7.5 Microwave Photonic Filter (MPF) -- 7.6 Laser Arrays -- 7.7 Conclusion -- Funding Information -- Disclosures -- References -- Index -- EULA. 676 $a621.367 700 $aWu$b Jiang$0875344 701 $aXu$b Hao$0668034 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910829879803321 996 $aOptical imaging and sensing$94106568 997 $aUNINA