LEADER 05543nam 2200709 450 001 9910829873803321 005 20210208185052.0 010 $a1-118-56267-4 010 $a1-299-18843-5 010 $a1-118-56297-6 010 $a1-118-56308-5 035 $a(CKB)2670000000327558 035 $a(EBL)1120431 035 $a(SSID)ssj0000831544 035 $a(PQKBManifestationID)11421083 035 $a(PQKBTitleCode)TC0000831544 035 $a(PQKBWorkID)10873770 035 $a(PQKB)10810576 035 $a(MiAaPQ)EBC1120431 035 $a(CaSebORM)9781118563083 035 $a(OCoLC)826022221 035 $a(EXLCZ)992670000000327558 100 $a20160407h20122012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aElectrothermics /$fedited by Javad Fouladgar 205 $a1st edition 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE :$cWiley,$d2012. 210 4$dİ2012 215 $a1 online resource (296 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-242-9 320 $aIncludes bibliographical references and index. 327 $aCover; Electrothermics; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Thermal and Electromagnetic Coupling; 1.1. Introduction; 1.2. Electromagnetic problem; 1.2.1. Local formulation of the electromagnetic problem; 1.2.1.1. Maxwell's equations; 1.2.1.2. Interaction between electromagnetic waves and materials; 1.2.1.3. Vector and scalar potentials; 1.2.2. Boundary conditions; 1.2.2.1. Boundary conditions between two different media; 1.2.2.2. Boundary conditions at the domain's limits; 1.2.3. Functional spaces; 1.2.4. Tonti diagrams 327 $a1.2.5. Different formulations of the electromagnetic field1.2.5.1. Magnetostatic for mulation; 1.2.5.2. Magnetostatic formulation in magnetic vector potentials; 1.2.5.3. Magnetodynamic formulation; 1.2.5.4. Magnetodynamic formulation in A-V; 1.2.5.5. Magnetodynamic formulation in T-T0-?; 1.2.5.6. Formulation in H-?[DUL 96]; 1.2.5.7. Uniqueness conditions; 1.2.6. Time harmonic form; 1.2.6.1. Maxwell's equations in the time harmonic form; 1.2.6.2. Electromagnetic power; 1.3. Thermal problem; 1.4. Magnetothermal coupling; 1.5. Solving the electromagnetic and thermal equations 327 $a1.5.1. Analytic methods1.5.1.1. Transient state; 1.5.1.2. Harmonic state; 1.5.2. Semi-analytic methods; 1.5.2.1. Shell elements and surface impedance methods; 1.5.2.2. Generalized shell element formulation of a conductive plate; 1.5.2.3. Moment method; 1.5.3. Numerical models; 1.5.3.1. Finite volume method without velocity terms; 1.5.3.2. Finite volume method with a velocity term; 1.5.3.3. Finite element method; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Simplified Model of a Radiofrequency Inductive Thermal Plasma Installation; 2.1. Introduction; 2.2. Plasma and its characteristics 327 $a2.2.1. Plasmas2.2.2. Properties of thermal plasma; 2.2.3. Inductive thermal plasma; 2.2.4. Thermal inductive plasma installation; 2.2.5. Inductive thermal plasma start-up and maintenance; 2.2.5.1. Plasma start-up; 2.2.5.2. Plasma maintenance; 2.3. Modeling a plasma installation; 2.3.1. Torch simulation; 2.3.1.1. Simplification; 2.3.1.2. Solving the electromagnetic equation; 2.3.1.3. Solving the heat equation; 2.4. Calculating charge impedance; 2.4.1. Results; 2.4.2. Local validations; 2.4.2.1. Magnetic field measurement method; 2.4.2.2. Temperature measurement method; 2.4.2.3. Results 327 $a2.5. Generator model2.5.1. Triode generator; 2.5.2. Modeling the HF generator in the steady state; 2.5.2.1. Principle of the developed model; 2.5.2.2. Triode modeling; 2.5.2.3. Quasi-analytic generator simulation; 2.5.2.4. Results; 2.5.3. Complete simulation of a thermal plasma installation; 2.5.3.1. Coupling algorithm; 2.5.3.2. Validation of the complete installation simulation model; 2.5.3.3. Calculating the installation's efficiency; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. Design Methodology of a Very Low-Frequency Plasma Transformer; 3.1. Introduction 327 $a3.2. Different types of very low-frequency applicators 330 $a This book concerns the analysis and design of induction heating of poor electrical conduction materials. Some innovating applications such as inductive plasma installation or transformers, thermo inductive non-destructive testing and carbon-reinforced composite materials heating are studied. Analytical, semi-analytical and numerical models are combined to obtain the best modeling technique for each case. Each model has been tested with experimental results and validated. The principal aspects of a computational package to solve these kinds of coupled problems are described. In t 410 0$aISTE 606 $aThermoelectric apparatus and appliances$vHandbooks, manuals, etc 606 $aThermoelectricity 606 $aThermoelectric apparatus and appliances$xDesign and construction 615 0$aThermoelectric apparatus and appliances 615 0$aThermoelectricity. 615 0$aThermoelectric apparatus and appliances$xDesign and construction. 676 $a537.6/5 676 $a537.65 700 $aFouladgar$b Javad$01678375 702 $aFouladgar$b Javad 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910829873803321 996 $aElectrothermics$94045977 997 $aUNINA