LEADER 12027nam 2200541 450 001 9910829843203321 005 20231213075751.0 010 $a1-119-75092-X 010 $a1-119-75090-3 035 $a(MiAaPQ)EBC30984097 035 $a(Au-PeEL)EBL30984097 035 $a(EXLCZ)9929181429800041 100 $a20231213d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNoisy Oceans $eMonitoring Seismic and Acoustic Signals in the Marine Environment /$fGaye Bayrakci and Frauke Klingelhoefer, editors 205 $aFirst edition. 210 1$aHoboken, NJ :$cJohn Wiley & Sons, Inc.,$d[2024] 210 4$dİ2024 215 $a1 online resource (283 pages) 225 1 $aGeophysical Monograph Series ;$vVolume 284 311 08$aPrint version: Bayrakci, Gaye Noisy Oceans Newark : American Geophysical Union,c2023 9781119750895 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 An Introduction to the Ocean Soundscape -- 1.1 Introduction -- 1.2 Seismic Waves -- 1.2.1 Body Waves -- 1.2.2 Surface Waves -- 1.3 Noise Sources in the Oceans -- 1.3.1 Noise from Geological Origins (Geophony) -- 1.3.2 Noise from Biological Origins (Biophony) -- 1.3.3 Noise from Anthropogenic Origins (Anthrophony) -- 1.4 Tools for Recording Marine Noise -- 1.4.1 Ocean-Bottom Seismometers -- 1.4.2 Ocean-Bottom Nodes -- 1.4.3 Ocean-Bottom Observatories -- 1.4.4 Acoustic Doppler Current Profilers -- 1.4.5 Echosounders -- 1.4.6 Drifters and Floats -- 1.5 Common Data-Processing Methods -- 1.5.1 Time-Drift Correction -- 1.5.2 Data Reduction -- 1.5.3 Instrument Relocation through Travel-Time Analysis -- 1.5.4 Rotation for Geophone Reorientation -- 1.5.5 Converting from Counts to Physical Units -- 1.5.6 Removing the Mean from the Data Set -- 1.5.7 Frequency Spectrum, Spectrogram, and Power Spectral Density -- 1.5.8 Frequency Filtering -- 1.5.9 Polarization Analysis -- 1.6 Summary of Chapters -- 1.7 Future Developments of Acoustic Measurements in the Ocean -- References -- Chapter 2 Seismic Ambient Noise: Application to Taiwanese Data -- 2.1 Introduction -- 2.2 Background Ambient Seismic Noise in Taiwan -- 2.3 Ambient Seismic Noise Generated by Intense Storms -- 2.4 Deepsea Internal Waves Southeast of Offshore Taiwan -- 2.5 Gas Emissions at the Seafloor and "Bubble" SDEs in SW Offshore Taiwan -- 2.6 Conclusion -- Acknowledgments -- References -- Chapter 3 Seasonal and Geographical Variations in the Quantified Relationship Between Significant Wave Heights and Microseisms: An Example From Taiwan -- 3.1 Introduction -- 3.2 Method and Data Processing -- 3.2.1 Data -- 3.2.2 Method -- 3.3 Testing and Determining Parameters -- 3.4 Results and Discussion. 327 $a3.4.1 Seasonal Variation -- 3.4.2 Geographical Variation -- 3.4.3 Residual Distributions of the SHW Simulation -- 3.5 Conclusions -- Acknowledgments -- References -- Chapter 4 Listening for Diverse Signals From Emergent and Submarine Volcanoes -- 4.1 Introduction -- 4.2 Detection and Monitoring of Submarine Volcanism -- 4.2.1 Hydroacoustic Arrays -- 4.2.2 Seismometer Arrays -- 4.2.3 Cabled Systems -- 4.2.4 Limitations in Detecting Submarine Volcanism -- 4.3 Diverse Volcano Signals Recorded Underwater -- 4.3.1 Distinguishing Signal from Noise in the Ocean -- 4.3.2 High-Frequency Volcanic Signals -- 4.3.3 Low-Frequency Volcanic Signals -- 4.3.4 Volcanic Tremor Signals -- 4.3.5 Volcanic Explosion-Type Signals -- 4.3.6 Volcanic Landslide Signals -- 4.4 Conclusions -- Availability Statement -- Acknowledgments -- References -- Chapter 5 Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities -- 5.1 Introduction -- 5.1.1 Recent Advances in Direct Monitoring of Submarine Landslides -- 5.1.2 Aims -- 5.2 Passive Geophysical Monitoring of Terrestrial Landslides -- 5.3 Which Aspects of Submarine Landslides Should We Be Able to Detect with Passive Systems? -- 5.4 Recent Advances and Opportunities in Passive Monitoring of Submarine Landslides -- 5.4.1 Determining the Timing and Location of Submarine Landslides at a Margin Scale Using Land-Based Seismological Networks -- 5.4.2 Quantifying Landslide Kinematics Using Hydrophones -- 5.4.3 Characterizing Landslide Run-Out to Enhance Hazard Assessments -- 5.4.4 Opportunities Using Distributed Cable-Based Sensing -- 5.5 The Application of Passive Geophysical Monitoring in Advancing Submarine Landslide Science. 327 $a5.5.1 Can Passive Seismic and Acoustic Techniques Overcome the Logistical Challenges That Have Previously Hindered the Monitoring of Submarine Landslides? -- 5.5.2 What Aspects of Submarine Landslides Can We Assess from Passive Remote Sensing Techniques, and What Needs To Be Resolved? -- 5.5.3 Suggestions for Future Directions -- 5.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Iceberg Noise -- 6.1 Introduction -- 6.2 Waveforms of Iceberg Noise -- 6.2.1 Iceberg Bursts -- 6.2.2 Iceberg Tremor -- 6.2.3 Iceberg Harmonic Tremor -- 6.3 Observation and Location of Iceberg Noise -- 6.3.1 Hydroacoustic Records at Long Distances -- 6.3.2 Records of Regional Hydroacoustic Networks -- 6.3.3 Seismic Records in Antarctica -- 6.4 Spatial and Temporal Variations of Iceberg Noise -- 6.5 Source Mechanisms of Iceberg Noise -- 6.6 Discussion -- 6.7 Conclusion -- Acknowledgments -- References -- Chapter 7 The Sound of Hydrothermal Vents -- 7.1 Introduction -- 7.2 Theory of Sound Production by Hydrothermal Vents -- 7.2.1 Radiation Efficiency -- 7.2.2 Monopole -- 7.2.3 Dipole -- 7.2.4 Quadrupole -- 7.2.5 Estimated Source Sound Pressure Levels -- 7.2.6 Estimated Source Spectra -- 7.3 Survey of Acoustic Measurements -- 7.3.1 Very Low Frequency (< -- 10 Hz) -- 7.3.2 Narrowband -- 7.3.3 Broadband -- 7.3.4 Tidal Variability -- 7.3.5 Summary of Acoustic Measurements -- 7.4 Other Sources of Ambient Noise -- 7.4.1 Microseisms -- 7.4.2 Local and Teleseismic Events -- 7.4.3 Biological Sources -- 7.4.4 Anthropogenic Sources -- 7.5 Measurement and Analysis Considerations -- 7.5.1 Flow Noise and Coupled Vibration -- 7.5.2 Sound Speed in Hydrothermal Fluid -- 7.5.3 Near Field vs Far Field -- 7.5.4 Hydrophone Array Measurements -- 7.6 Conclusion -- Nomenclature -- References -- Chapter 8 Atypical Signals: Characteristics and Sources of Short-Duration Events. 327 $a8.1 Introduction -- 8.2 Signal Characteristics -- 8.3 Worldwide Distribution of SDEs -- 8.4 Observations and Studies Advancing SDE Understanding -- 8.4.1 Observations from Different Types of Ocean Bottom Instruments -- 8.4.2 Continuous Long-Term, Multidisciplinary Monitoring of Gas Emissions -- 8.4.3 Correlation with Acoustic Monitoring of Gas Emissions -- 8.4.4 Correlation with Earthquakes -- 8.4.5 Correlation with Tides -- 8.4.6 Controlled in situ and Laboratory Experiments -- 8.5 Discussion of SDE Potential Sources -- 8.5.1 Biological Origin -- 8.5.2 Action of Ocean/Sea Currents -- 8.5.3 Fluids in Near-Surface Sediments -- 8.5.4 Low-Magnitude Seismicity -- 8.5.5 Source Modeling -- 8.6 Conclusion -- Acknowledgments -- References -- Chapter 9 Short-Duration Events Associated With Active Seabed Methane Venting: Scanner Pockmark, North Sea -- 9.1 Introduction -- 9.2 Scanner Pockmark Complex -- 9.3 CHIMNEY Seismic Experiment -- 9.4 Methods -- 9.5 Results -- 9.6 Discussion -- 9.6.1 Characteristics of SDEs -- 9.6.2 Spatial Distribution of SDEs -- 9.6.3 Negative Correlation with the Tide -- 9.6.4 Efficiency of SDE Detection -- 9.7 Conclusion -- Acknowledgments -- References -- Chapter 10 Ambient Bubble Acoustics: Seep, Rain, and Wave Noise -- 10.1 Introduction -- 10.2 Bubbles as Acoustic Sources -- 10.2.1 The Injection of a Gas Bubble -- 10.2.2 Bubbles as Simple Harmonic Oscillators -- 10.2.3 Minnaert Frequency -- 10.3 Subsurface Gas Release -- 10.3.1 Gas-Seep Acoustics -- 10.4 Rainfall Acoustics -- 10.5 Acoustics of Breaking Waves -- 10.6 Conclusion -- Further Reading -- Appendix -- Symbology -- References -- Chapter 11 Baleen Whale Vocalizations -- 11.1 Introduction -- 11.1.1 Marine Mammal Classification -- 11.2 Physical Description of Sound and Its Conventions -- 11.2.1 Sound Pressure Level (SPL) -- 11.2.2 Source Level (SL). 327 $a11.2.3 Whale-Sound Analysis -- 11.3 Marine Mammal Vocalizations -- 11.3.1 Sirenia and Carnivora -- 11.3.2 Toothed Whales -- 11.3.3 Baleen Whales -- 11.4 Conclusions -- Acknowledgments -- References -- Chapter 12 Tracking and Monitoring Fin Whales Offshore Northwest Spain Using Passive Acoustic Methods -- 12.1 Introduction -- 12.1.1 Passive Acoustic Monitoring -- 12.1.2 Fin Whale Vocalizations -- 12.1.3 Data Available for This Study -- 12.2 Methods -- 12.2.1 Call Detection -- 12.2.2 Delay Estimation -- 12.2.3 Localization and Tracking -- 12.2.4 Kalman Filter -- 12.3 Results -- 12.3.1 Detections -- 12.3.2 Localization -- 12.3.3 Tracking -- 12.4 Discussion -- 12.5 Conclusions -- Acknowledgments -- References -- Chapter 13 Noise From Marine Traffic -- 13.1 Introduction -- 13.2 Underwater Radiated Noise -- 13.2.1 Sources of Shipping Noise -- 13.2.2 Measuring Radiated Noise -- 13.2.3 Modeling Underwater Radiated Noise -- 13.3 Noise Mapping -- 13.3.1 Modeling Shipping Contributions -- 13.3.2 Source Properties -- 13.3.3 Acoustic Propagation -- 13.3.4 Noise-Mapping Applications -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Tracking Multiple Underwater Vessels With Passive Sonar Using Beamforming and a Trajectory PHD Filter -- 14.1 Introduction -- 14.2 Narrow-Band Signal Model -- 14.3 Detection via Beamforming and CA-CFAR -- 14.3.1 CBF -- 14.3.2 CA-CFAR -- 14.4 Trajectory PHD Filter for Multiple Underwater Vessels -- 14.4.1 System Model -- 14.4.2 TPHD Filter -- 14.5 Experiments -- 14.5.1 Testing Using Numerical Simulations -- 14.5.2 Testing Using Real-World Experimental Data -- 14.6 Conclusions -- References -- Chapter 15 Deciphering the Submarine Soundscape: New Insights, Broader Implications, Future Directions -- 15.1 Introduction -- 15.2 What WAS Not Included -- 15.3 Further Information -- 15.4 Broader Context. 327 $a15.5 Future Impact and Implications. 330 $a"Monitoring Seismic and Acoustic Waves at Sea describes the non-tectonic related seismic signals, show examples of their waveforms, discuss the methodologies allowing to detect and study them, outline their impact and the remaining questions and establish a nomenclature for scientists working on these events, to ease future communications. Studies show examples where NSE's are used for gaining new knowledge in multiple domains of sciences. Volcanic tremors are studied to track the magma movements and used as a successful early warning system to mitigate the volcanic hazard for years. Whale calls recorded on seismic stations are used to track whales and study their habit changes connected to environmental changes. Ambient seismic noise is used to infer the seafloor physical properties. Monochromatic short duration events are suggested to be the expression of fluid migration within the shallow sediments, and they are used for the quantification of local seafloor Methane emission. Case studies show that NSE's allow gaining knowledge in processes involved in climate change. Also, they are used for geo-hazard mitigation. They, therefore, have a huge economic and societal importance."--$cProvided by publisher. 410 0$aGeophysical monograph ;$vVolume 284. 606 $aUnderwater acoustics 606 $aSeismic waves 615 0$aUnderwater acoustics. 615 0$aSeismic waves. 676 $a551.46/54 702 $aBayrakci$b Gaye 702 $aKlingelhoefer$b Frauke 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910829843203321 996 $aNoisy Oceans$94022984 997 $aUNINA