LEADER 03669nam 2200625 450 001 9910829176703321 005 20170816143246.0 010 $a1-4704-0536-9 035 $a(CKB)3360000000465114 035 $a(EBL)3114042 035 $a(SSID)ssj0000889169 035 $a(PQKBManifestationID)11478752 035 $a(PQKBTitleCode)TC0000889169 035 $a(PQKBWorkID)10875487 035 $a(PQKB)11317683 035 $a(MiAaPQ)EBC3114042 035 $a(RPAM)15574025 035 $a(PPN)195418190 035 $a(EXLCZ)993360000000465114 100 $a20150415h20092009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRandom sets and invariants for (type II) continuous tensor product systems of Hilbert spaces /$fVolkmar Liebscher 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2009. 210 4$dİ2009 215 $a1 online resource (124 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 199, Number 930 300 $a"Volume 199, Number 930 (first of 6 numbers)." 311 $a0-8218-4318-4 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Basics""; ""Chapter 3. From Product Systems to Random Sets""; ""3.1. Product Systems""; ""3.2. Random Sets in Product Systems""; ""3.3. Measure Types as Invariants""; ""3.4. Measure Types Related to Units""; ""3.5. Tensor Products (I)""; ""Chapter 4. From Random Sets to Product Systems""; ""4.1. General Theory""; ""4.2. Example 1: Finite Random Sets""; ""4.3. Example 2: Countable Random Sets""; ""4.4. Example 3: Random Cantor Sets""; ""4.5. Tensor Products (II)""; ""4.6. The map e [omitted] M[sup(e,u)] is surjective"" 327 $a""Chapter 5. An Hierarchy of Random Sets""""5.1. Factorising Projections and Product Subsystems""; ""5.2. Subsystems of e[sup(M)]""; ""5.3. The Lattice of Stationary Factorising Measure Types""; ""Chapter 6. Direct Integral Representations""; ""6.1. Random Sets and Direct Integrals""; ""6.2. Direct Integrals in Product Systems""; ""6.3. Characterisations of Type I Product Systems""; ""6.4. Unitalising Type III Product Systems""; ""Chapter 7. Measurability in Product Systems: An Algebraic Approach""; ""7.1. GNS-representations"" 327 $a""7.2. Algebraic Product Systems and Intrinsic Measurable Structures""""7.3. Product Systems of W*-Algebras""; ""7.4. Product systems and Unitary Evolutions""; ""7.5. Additional Results on Measurability""; ""Chapter 8. Construction of Product Systems from General Measure Types""; ""8.1. General Results""; ""8.2. Product Systems from Random Sets""; ""8.3. Product Systems from Random Measures""; ""8.4. Product Systems from Random Increment Processes""; ""Chapter 9. Beyond Separability: Random Bisets""; ""Chapter 10. An Algebraic Invariant of Product Systems"" 327 $a""Chapter 11. Conclusions and Outlook""""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 199, Number 930. 606 $aHilbert space 606 $aRandom sets 606 $aInvariants 606 $aCalculus of tensors 615 0$aHilbert space. 615 0$aRandom sets. 615 0$aInvariants. 615 0$aCalculus of tensors. 676 $a515/.733 700 $aLiebscher$b Volkmar$f1965-$01650812 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910829176703321 996 $aRandom sets and invariants for (type II) continuous tensor product systems of Hilbert spaces$94000402 997 $aUNINA