LEADER 00676nam0-22002411i-450- 001 990002685350403321 035 $a000268535 035 $aFED01000268535 035 $a(Aleph)000268535FED01 035 $a000268535 100 $a20000920d1988----km-y0itay50------ba 101 0 $aENG 200 1 $aContabilita' industriale$eprincipi e appli cazioni.$fdi Di Cristofano Giovanni. 210 $aMilano$cIPSOA$d1988 700 1$aDi Cristofano,$bGiovanni$0370819 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002685350403321 952 $a13-8-25$b(DEA)$fECA 959 $aECA 996 $aContabilita' industriale$9428156 997 $aUNINA DB $aING01 LEADER 00831nam0-22003011--450- 001 990008229940403321 005 20051121134801.0 035 $a000822994 035 $aFED01000822994 035 $a(Aleph)000822994FED01 035 $a000822994 100 $a20051121d1985----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aControllo ed enti locali$ecritica del modulo statual-sociale$fAndrea Piraino 210 $aPalermo$cCELUP$d1985 215 $a278 p.$d23 cm 225 1 $aCollana di studi giuridici 676 $a320.8$v12 rid.$zita 700 1$aPiraino,$bAndrea$0262826 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008229940403321 952 $aVI G 595$b1138$fDDA 959 $aDDA 996 $aControllo ed enti locali$9738222 997 $aUNINA LEADER 03583nam 2200601 450 001 9910829176503321 005 20180731044909.0 010 $a1-4704-0533-4 035 $a(CKB)3360000000465111 035 $a(EBL)3114166 035 $a(SSID)ssj0000888802 035 $a(PQKBManifestationID)11566304 035 $a(PQKBTitleCode)TC0000888802 035 $a(PQKBWorkID)10866476 035 $a(PQKB)11249441 035 $a(MiAaPQ)EBC3114166 035 $a(RPAM)15511249 035 $a(PPN)195418166 035 $a(EXLCZ)993360000000465111 100 $a20150416h20092009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBrownian Brownian motion-I /$fN. Chernov, D. Dolgopyat 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2009. 210 4$dİ2009 215 $a1 online resource (208 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 198, Number 927 300 $a"Volume 198, Number 927 (fourth of 6 numbers)." 311 $a0-8218-4282-X 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""Chapter 1. Introduction""; ""1.1. The model""; ""1.2. The container""; ""1.3. Billiard approximations""; ""Chapter 2. Statement of results""; ""2.1. Heavy disk in 'equilibrium' (linear motion)""; ""2.2. Heavy disk at rest (slow acceleration)""; ""2.3. Heavy disk of small size""; ""2.4. Comparison to previous works""; ""Chapter 3. Plan of the proofs""; ""3.1. General strategy""; ""3.2. Precise definitions""; ""3.3. Key technical results""; ""Chapter 4. Standard pairs and equidistribution""; ""4.1. Unstable vectors""; ""4.2. Unstable curves"" 327 $a""6.2. Structure of the proofs""""6.3. Short term moment estimates for V""; ""6.4. Moment estimatesa???a priori bounds""; ""6.5. Tightness""; ""6.6. Second moment""; ""6.7. Martingale property""; ""6.8. Transition to continuous time""; ""6.9. Uniqueness for stochastic differential equations""; ""Chapter 7. Fast slow particle""; ""Chapter 8. Small large particle""; ""Chapter 9. Open problems""; ""9.1. Collisions of the massive disk with the wall""; ""9.2. Longer time scales""; ""9.3. Stadia and the piston problem""; ""9.4. Finitely many particles""; ""9.5. Growing number of particles"" 327 $a""9.6. Particles of positive size""""Appendix A. Statistical properties of dispersing billiards""; ""A.1. Decay of correlations: overview""; ""A.2. Decay of correlations: extensions""; ""A.3. Large deviations""; ""A.4. Moderate deviations""; ""A.5. Nonsingularity of diffusion matrix""; ""A.6. Asymptotics of diffusion matrix""; ""Appendix B. Growth and distortion in dispersing billiards""; ""B.1. Regularity of H-curves""; ""B.2. Invariant Section Theorem""; ""B.3. The function space R""; ""Appendix C. Distortion bounds for two particle system""; ""Bibliography""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 198, Number 927. 606 $aDiffusion processes 606 $aBrownian movements 606 $aLimit theorems (Probability theory) 615 0$aDiffusion processes. 615 0$aBrownian movements. 615 0$aLimit theorems (Probability theory) 676 $a519.2/33 700 $aChernov$b Nikolai$f1956-$0300360 702 $aDolgopyat$b Dmitry$f1972- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910829176503321 996 $aBrownian Brownian motion-I$94000401 997 $aUNINA