LEADER 01263ojm 2200253z- 450 001 9910148879803321 005 20230912161814.0 010 $a0-00-721900-8 035 $a(CKB)3710000000923953 035 $a(BIP)014060444 035 $a(EXLCZ)993710000000923953 100 $a20231107c2005uuuu -u- - 101 0 $aeng 200 10$aPicture of Dorian Gray 210 $cHarperCollins UK 330 8 $aThe classic of eternal youth.'How sad it is! I shall grow old, and horrid, and dreadful. But this picture will remain always young... If it was only the other way!'Wilde's first and only published novel recounts the story of handsome Dorian Gray who upon having his portrait painted desires that it will age and grow ugly while he may remain eternally beautiful. The painting, which reflects each of Gray's sins and transgressions in its hideousness, haunts him until it finally becomes unbearable. In this dark tale of duplicity and mortality, Wilde creates a world where art and reality collide. 517 $aPicture of Dorian Gray, The 676 $a823/.8 700 $aWilde$b Oscar.$f1775-1817$01434190 702 $aCallow$b Simon$4oth 906 $aAUDIO 912 $a9910148879803321 996 $aPicture of Dorian Gray$93654830 997 $aUNINA LEADER 02430nam 2200601 450 001 9910829070003321 005 20180731045132.0 010 $a1-4704-0608-X 035 $a(CKB)3360000000465175 035 $a(EBL)3114178 035 $a(SSID)ssj0000889166 035 $a(PQKBManifestationID)11493927 035 $a(PQKBTitleCode)TC0000889166 035 $a(PQKBWorkID)10875176 035 $a(PQKB)10469966 035 $a(MiAaPQ)EBC3114178 035 $a(RPAM)16646678 035 $a(PPN)195418808 035 $a(EXLCZ)993360000000465175 100 $a20150417h20102010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQ-valued functions revisited /$fCamillo De Lellis, Emanuele Nunzio Spadaro 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2010. 210 4$dİ2010 215 $a1 online resource (79 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 211, Number 991 300 $a"Volume 211, Number 991 (first of 5 numbers)." 311 $a0-8218-4914-X 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Introduction""; ""Chapter 1. The elementary theory of Q-valued functions""; ""1.1. Decomposition and selection for Q-valued functions""; ""1.2. Extension of Lipschitz Q-valued functions""; ""1.3. Differentiability and Rademacher's Theorem""; ""Chapter 2. Almgren's extrinsic theory""; ""2.1. The biLipschitz embedding and the retraction ""; ""2.2. Properties of Q-valued Sobolev functions""; ""2.3. Existence of Dir-minimizing Q-valued functions""; ""Chapter 3. Regularity theory""; ""3.1. First variations""; ""3.2. A maximum principle for Q-valued functions"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 211, Number 991. 606 $aDirichlet principle 606 $aGeometric measure theory 606 $aMetric space 606 $aHarmonic maps 615 0$aDirichlet principle. 615 0$aGeometric measure theory. 615 0$aMetric space. 615 0$aHarmonic maps. 676 $a515.9 700 $aDe Lellis$b Camillo$0471661 702 $aSpadaro$b Emanuele Nunzio$f1983- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910829070003321 996 $aQ-valued functions revisited$94113391 997 $aUNINA