LEADER 03247nam 2200613 450 001 9910829068603321 005 20170822144321.0 010 $a1-4704-0578-4 035 $a(CKB)3360000000465148 035 $a(EBL)3114138 035 $a(SSID)ssj0000889130 035 $a(PQKBManifestationID)11479159 035 $a(PQKBTitleCode)TC0000889130 035 $a(PQKBWorkID)10875173 035 $a(PQKB)10346621 035 $a(MiAaPQ)EBC3114138 035 $a(RPAM)16096496 035 $a(PPN)195418549 035 $a(EXLCZ)993360000000465148 100 $a20150417h20092009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOperator theory on noncommutative domains /$fGelu Popescu 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2009. 210 4$dİ2009 215 $a1 online resource (124 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 205, Number 964 300 $a"Volume 205, Number 964 (third of 5 numbers)." 311 $a0-8218-4710-4 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Abstract""; ""Introduction""; ""Chapter 1. Operator algebras associated with noncommutative domains""; ""1.1. The noncommutative domain Df and a universal model""; ""1.2. The domain algebra An(Df) and its representations""; ""1.3. The Hardy algebra Fn(Df)""; ""1.4. Functional calculus for n-tuples of operators in Df""; ""1.5. The noncommutative variety Vf,J and a functional calculus""; ""1.6. Weighted shifts, symmetric weighted Fock spaces, and multipliers""; ""Chapter 2. Free holomorphic functions on noncommutative domains"" 327 $a""2.1. Free holomorphic functions and Poisson transforms""""2.2. Schwarz lemma and Bohr's inequality for Fn(Df) ""; ""2.3. Weierstrass and Montel theorems for the algebra Hol(Df)""; ""2.4. Cauchy transforms and analytic functional calculus for n-tuples of operators""; ""Chapter 3. Model theory and unitary invariants on noncommutative domains""; ""3.1. Weighted shifts and invariant subspaces""; ""3.2. C*-algebras associated with noncommutative varieties and Wold decompositions""; ""3.3. Dilations on noncommutative domains and varieties""; ""3.4. Characteristic functions and model theory"" 327 $a""3.5. Curvature invariant for n-tuples of operators in Dp""""Chapter 4. Commutant lifting and applications""; ""4.1. Interpolation on noncommutative domains""; ""4.2. Corona theorem for a class of Hardy algebras""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 205, Number 964. 606 $aErgodic theory 606 $aLinear operators 606 $aDilation theory (Operator theory) 606 $aNoncommutative algebras 615 0$aErgodic theory. 615 0$aLinear operators. 615 0$aDilation theory (Operator theory) 615 0$aNoncommutative algebras. 676 $a515.724 700 $aPopescu$b Gelu$f1958-$01644415 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910829068603321 996 $aOperator theory on noncommutative domains$94113377 997 $aUNINA