LEADER 11385nam 2200697 a 450 001 9910828971903321 005 20241003182344.0 010 $a1-61942-951-9 035 $a(CKB)2550000001043018 035 $a(EBL)3021086 035 $a(SSID)ssj0000874313 035 $a(PQKBManifestationID)11526843 035 $a(PQKBTitleCode)TC0000874313 035 $a(PQKBWorkID)10885980 035 $a(PQKB)10138554 035 $a(MiAaPQ)EBC3021086 035 $a(Au-PeEL)EBL3021086 035 $a(CaPaEBR)ebr10681286 035 $a(OCoLC)847621319 035 $a(EXLCZ)992550000001043018 100 $a20120301d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBrick and mortar research /$fSantiago Manuel Rivera and Antonio L. Pena Diaz, editors 205 $a1st ed. 210 $aHauppauge, N.Y. $cNova Science Publishers$dc2012 215 $a1 online resource (353 p.) 225 1 $aMaterials science and technologies 225 1 $aEngineering tools, techniques and tables 300 $aDescription based upon print version of record. 311 $a1-61942-927-6 320 $aIncludes bibliographical references and index. 327 $aIntro -- BRICK AND MORTAR RESEARCH -- BRICK AND MORTAR RESEARCH -- Library of Congress Cataloging-in-Publication Data -- CONTENTS -- PREFACE -- Chapter 1: CORROSION AND ENVIRONMENTAL ASPECTS OFCEMENTS AND REINFORCED CONCRETE -- ABSTRACT -- INTRODUCTION -- CONTAINMENT OF HAZARDOUS WASTES IN CEMENT -- System Factors -- Time -- Temperature -- Ratio of Volume of Leachant to Volume of Solid (V/Vs) -- Leachant Factors -- Leachant Composition -- pH -- Flow -- Solid Factors -- Composition of the Solid. Porosity -- Surface Condition -- NOVEL CEMENTITIOUS BINDERS -- Alkaline Cements as an Alternative to Portland Cement -- Classification of Alkali-Activated Cements -- Reaction Mechanisms -- First Stage "Destruction-Coagulation" -- Second Stage "Coagulation-Condensation" -- Third Stage "Condensation-Crystallization" -- Alkali-Activation of Fly Ash -- Particle Size and Chemical Composition of Fly Ash -- Type and Concentration of the Activator -- Influence of Alkali Cations -- Influence of Alkali Anions -- Curing Conditions -- Rheology -- Durability of Alkali-Activated Fly Ash Binders -- Engineering Properties and Applications -- CORROSION OF REINFORCED CONCRETE STRUCTURES -- Mechanisms for Corrosion in Concrete -- Carbonation Reaction -- Pitting Corrosion -- Role of Chloride Ion -- Depassivation -- Propagation -- Non-Destructive Monitoring Techniques -- Fundaments of the Method -- Estimation of Rp from the Slope of ln(ht) vs. t Plot -- Direct Measurement of the Time Constant -- New Palliative Methods to Prevent Reinforced Concrete Corrosion -- Reduction of Permeability of the Concrete -- Protective Coatings on the Concrete -- Protective Coating on the Steel -- Use of Stainless Steel Reinforcements -- Suppression of the Electrochemical Process -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES. 327 $aChapter 2: INNOVATIVE USES OF UNFIRED BRICKS AND CLAY PRODUCTS AS SUSTAINABLE BUILDING SOLUTIONS -- INTRODUCTION -- SUSTAINABLE DESIGN CRITERIA FOR BUILDING CONSTRUCTION MATERIALS -- EARTH CONSTRUCTION: A HISTORICAL BACKGROUND -- SOIL STABILIZATION TECHNOLOGIES FOR BUILDING CONSTRUCTION APPLICATIONS -- CHEMICAL STABILIZATION TYPES -- OTHER METHODS OF SOIL STABILIZATION -- FIBRES AND SOIL REINFORCEMENT -- FIBRE PROPERTIES AND CLASSIFICATIONS -- Natural Fibres -- 1. Vegetal Fibres -- 2. Animal Fibres -- Synthetic Fibres -- 1. Plastic Fibers -- 2. Metal and Glass Fibres -- UNFIRED BRICKS RESEARCH: GEOGRAPHIC DISTRIBUTION -- APPENDIX 1: LITERATURE REVIEW -- 1. Mortars, Blocks and Soil Reinforced with Fibres -- 2. Mortars, Blocks and Soil Walls -- REFERENCES -- Chapter 3: IN-PLANE BEHAVIOR OF CFRP RETROFITTED MASONRY: EXPERIMENTAL AND NUMERICAL ASSESSMENT -- 1. ABSTRACT -- 2. INTRODUCTION -- 3. IN PLANE BEHAVIOUR OF UNEINFORCED CLAY MASONRY UNITS -- 3.1. Axial Compression Normal to the Bed Joints -- 3.2. Shear Behavior -- 4. IN PLANE BEHAVIOUR OF FRP REINFORCED CLAY MASONRY UNITS -- 4.1. Axial Compression Normal to the Bed Joints -- 4.2. Shear Behavior -- 5. EXPERIMENTAL STUDY -- 5.1. General -- 5.2. Tests on Clay Bricks and Mortar -- 5.3. Carbon Fibre Fabric -- 5.4. Uniaxial Compression Tests -- 5.4.1. Masonry Panels Description and Experimental Set up -- 5.4.2. Discussion of Test Results -- 5.4.2.1. Control Unretrofitted Panels -- 5.4.2.2. CFRP Composite Retrofitted and Repaired Panels -- 5.5. Diagonal Compression Tests -- 5.5.1. Masonry Panels Description and Experimental Set up -- 5.5.2. Discussion of Test Results -- 5.5.2.1. Control Unretrofitted Panels -- 5.5.2.2. CFRP Composite Retrofitted and Repaired Panels -- 5.5.2.3. Comparison between Experimental and Analytically Predicted Shear Strength for FRP-Strengthened Panels -- 6. NUMERICAL STUDY. 327 $a6.1. Detailed Modelling of the Unreinforced and Retrofitted Masonry -- 6.1.1. Plastic Process -- 6.1.2. Damage Process -- 6.1.3. Consistency Conditions -- 6.2. Simplified Modelling -- 6.3. Composite Materials Modeling -- 6.4. Influence of the Composit -- 6.5.1. Behaviour under Uniaxial Compression Normal to the Bed Joints -- 6.5.2. Diagonal Compression -- 6.6. Behaviour of a CFRP Reinforced Masonry Wall -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 4: HIGH TEMPERATURE EFFECTS ON MASONRY MATERIALS -- ABSTRACT -- 1. INTRODUCTION -- 2. EFFECTS OF FIRE ON MASONRY STRUCTURES -- 2.1. Structural Behavior of Masonry Exposed to Fire Conditions -- 2.2. Temperature-Dependent Material Properties -- 2.2.1. Temperature-Dependent Material Properties under Fire Exposure -- 2.2.2. Temperature-Dependent Material Properties after Fire Exposure (Residual) -- 3. RESEARCH ON RESIDUAL TEMPERATURE-DEPENDENT PROPERTIES OF MASONRY -- 3.1. Testing Program -- 3.2. Experimental Results -- 3.2.1. Brick and Mortar Specimens -- 3.2.2. Masonry Specimens -- CONCLUSION -- REFERENCES -- Chapter 5: DATING BRICKS AND MORTARS OF ANCIENT AND HISTORICAL BUILDINGS -- ABSTRACT -- 1. INTRODUCTION -- 1.1. Building Materials -- 1.2. Mortars -- 1.3. Bricks -- 2. DATING ANCIENT BUILDINGS: METHODS AND PROBLEMS -- 2.1. Historical Data and Archaeological Methods -- 2.2. Absolute Dating Methods -- 3. BRICK DATING -- 3.1. Luminescence Dating -- 3.1.1. Luminescence Age Equation -- 3.1.2. Dose Rate Estimation -- 3.1.3. Limitations of Dating Bricks by Luminescence -- 3.2. Other Methods: Archaeomagnetism -- 4. MORTAR DATING -- 4.1. Geochemical Procedures for Dating -- 4.2. RADIOCARBON DATING -- 4.3. Luminescence Dating -- 5. FINAL CONSIDERATIONS -- REFERENCES -- Chapter 6: RAMAN SPECTROSCOPIC CHARACTERIZATION OF BRICK AND MORTARS: THE ADVANTAGES OF THE NON DESTRUCTIVE AND IN SITU ANALYSIS. 327 $aABSTRACT -- 1. INTRODUCTION -- 2. PERFORMANCE OF COMMERCIALLY AVAILABLERAMAN SPECTROMETERS -- 3. DETERIORATION DUE TO ATMOSPHERIC POLLUTION -- 4. DETERIORATION DUE TO INFILTRATION WATERS -- 5. BIODETERIORATION MARKERS -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 7: PREPARATION OF COLOURED FACING BRICK FROM LOW MELTING CLAY UNDER A WATER VAPOUR ATMOSPHERE -- ABSTRACT -- INTRODUCTION -- EXPERIMENTAL -- RESULTS AND DISCUSSION -- Influence of Water Vapour Atmosphereon the Structure Formation of Ceramics -- Colour Characteristics of Samples Fired in Water Vapour and Ambient Atmosphere -- Technological Scheme for Production of Coloured Bricks from Low Melting Clay -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 8: NEGATIVE EFFECTS OF THE USE OF WHITE PORTLAND CEMENT AS ADDITIVE TO AERIAL LIME MORTARS SET AT ATMOSPHERIC CONDITIONS: A CHEMICAL, MINERALOGICAL AND PHYSICAL-MECHANICAL INVESTIGATION -- ABSTRACT -- 1. INTRODUCTION -- 2. MATERIALS AND METHODS -- 2.1. Mortars Elaboration -- 2.2. Characterization of the Mortars Components -- 2.3. Mortars Characterization -- 3. RESULTS AND DISCUSSION -- 3.1. Characterization of Mortars Components -- 3.2. Evaluation of the Hardening Processes in Lime andCement-Lime Mortars -- 3.2.1. Carbonation Degree -- 3.2.2. Identification of the Hydrated Phases in Cement-Lime Mortar -- 3.2.3. Pore System -- 3.3. Physic-Mechanical Properties of Mortars -- 3.3.1. Capillary Uptake -- 3.3.2. Mechanical Strength -- 3.3.3. Shrinkage -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 9: INDUSTRIAL COATINGS FOR HIGH PERFORMANCE APPLICATION: PHYSICOCHEMICAL CHARACTERISTICS AND ANTI-CORROSIVE BEHAVIOR -- ABSTRACT -- 1. INTRODUCTION -- 2. EXPERIMENTAL -- 2.1. Materials -- 2.2. Methods -- Half-Cell Potential Measurements -- Linear Polarization Technique (LPR) -- Electrochemical Impedance Spectroscopy (EIS). 327 $aTransmission Rates -- 3. RESULTS AND DISCUSSION -- Half-Cell Potential Measurements -- Linear Polarization Technique -- Electrochemical Impedance Spectroscopy -- Transmission Rates -- CONCLUSION -- REFERENCES -- Chapter10: ON THE MODELING OF BRICK-MORTAR INTERFACE -- 1.Introduction -- 2.Experimental Study of The Masonry -- 2.1.Introduction -- 2.2.CharacterizationofMaterials -- 2.2.1.Mortar -- 2.2.2.Bricks -- 2.3.Mechanical Behavior of Small Masonry Structures Under Shear Loading Without Confinement -- 2.3.1.Experimental Procedure -- 2.3.2.Full Bricks -- 2.3.3.Hollow Bricks -- 2.3.4.Discussions -- 2.4.Mechanical Behavior of Small Masonry Structures Under Shear Loading With Confinement -- 2.5.Mechanical Behavior of Small Wall in Diagonal Compression -- 3. Phenomenological Model of Interface -- 3.1.Introduction -- 3.2.Presentation of RCCM Model -- UnilateralContactWithAdhesion -- FrictionWithAdhesion -- EvolutionofTheIntensityofAdhesion -- 3.3.Implementation of RCCM Model -- 3.4.Numerical Results: Mechanical Behavior of Small Masonry Structures Under Shear Loading -- 3.4.1.Full Brick Triplets -- Fracturealongtheinterface -- Cracksdevelopingintothemortar -- 3.4.2.Hollow Brick structures -- 3.5.Partial Conclusion -- 4. A Multi-Scale Model for Interface Law -- 4.1.Introduction -- 4.2.Principle of the Model -- 4.3.A Numerical Example -- 4.4.Partial conclusion -- 5.Conclusion -- References -- Chapter11: ULTRASONIC CHARACTERIZATION OF MORTARUSING MICROMECHANICAL AND MULTIPLE SCATTERING MODELS -- Abstract -- 1.Introduction -- 2.Micromechanical Modeling -- 2.1.InfluenceofMicrostructuralParametersofPlainMortarontheUltrasonicVelocityUsingtheMultiphaseMicromechanicalModel -- 2.1.1.InfluenceoftheGeometryoftheInclusions -- 2.1.2.InfluenceoftheElasticPropertiesoftheNon-PorousMatrix -- 2.1.3.InfluenceoftheVolumeFractionofSandandPores. 327 $a2.1.4.EstimationofPorosityinMortarsUsingUltrasonicMeasurementsandtheMultiphaseMicromechanicalModel. 410 0$aMaterials science and technologies series. 410 0$aEngineering tools, techniques and tables. 606 $aBricks$xTesting 606 $aCement$xTesting 606 $aMasonry$xTesting 606 $aBrickworks 615 0$aBricks$xTesting. 615 0$aCement$xTesting. 615 0$aMasonry$xTesting. 615 0$aBrickworks. 676 $a624.1/836 701 $aRivera$b Santiago Manuel$01680579 701 $aPena Diaz$b Antonio L$01680580 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828971903321 996 $aBrick and mortar research$94049378 997 $aUNINA