LEADER 03383nam 22005535 450 001 9910828909403321 005 20200705091915.0 010 $a1-4612-1700-8 024 7 $a10.1007/978-1-4612-1700-8 035 $a(CKB)3400000000089662 035 $a(SSID)ssj0001297168 035 $a(PQKBManifestationID)11725916 035 $a(PQKBTitleCode)TC0001297168 035 $a(PQKBWorkID)11353958 035 $a(PQKB)11790575 035 $a(DE-He213)978-1-4612-1700-8 035 $a(MiAaPQ)EBC3076261 035 $a(PPN)230526306 035 $a(EXLCZ)993400000000089662 100 $a20121227d1998 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aIntersection Theory /$fby William Fulton 205 $a2nd ed. 1998. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d1998. 215 $a1 online resource (XIII, 470 p.) 225 1 $aErgebnisse der Mathematik und ihrer Grenzgebiete,$x0071-1136 ;$vDritte Folge, volume 2 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-98549-2 320 $aIncludes bibliographical references and index. 327 $a1. Rational Equivalence -- 2. Divisors -- 3. Vector Bundles and Chern Classes -- 4. Cones and Segre Classes -- 5. Deformation to the Normal Cone -- 6. Intersection Products -- 7. Intersection Multiplicities -- 8. Intersections on Non-singular Varieties -- 9. Excess and Residual Intersections -- 10. Families of Algebraic Cycles -- 11. Dynamic Intersections -- 12. Positivity -- 13. Rationality -- 14. Degeneracy Loci and Grassmannians -- 15. Riemann-Roch for Non-singular Varieties -- 16. Correspondences -- 17. Bivariant Intersection Theory -- 18. Riemann-Roch for Singular Varieties -- 19. Algebraic, Homological and Numerical Equivalence -- 20. Generalizations -- Appendix A. Algebra -- Appendix B. Algebraic Geometry (Glossary) -- Notation. 330 $aFrom the ancient origins of algebraic geometry in the solutions of polynomial equations, through the triumphs of algebraic geometry during the last two centuries, intersection theory has played a central role. The aim of this book is to develop the foundations of this theory, and to indicate the range of classical and modern applications. Although a comprehensive history of this vast subject is not attempted, the author points out some of the striking early appearances of the ideas of intersection theory. A suggested prerequisite for the reading of this book is a first course in algebraic geometry. Fulton's introduction to intersection theory has been well used for more than 10 years. It is still the only existing complete modern treatise of the subject and received the Steele Prize for best exposition in August 1996. 410 0$aErgebnisse der Mathematik und ihrer Grenzgebiete ;$v3. Folge, Bd. 2. 606 $aAlgebraic geometry 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 615 0$aAlgebraic geometry. 615 14$aAlgebraic Geometry. 676 $a516.3/5 700 $aFulton$b William$4aut$4http://id.loc.gov/vocabulary/relators/aut$041611 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828909403321 996 $aIntersection theory$978984 997 $aUNINA