LEADER 05634nam 2200721 450 001 9910828840303321 005 20200520144314.0 010 $a0-323-31269-1 035 $a(CKB)3710000000365872 035 $a(EBL)1980476 035 $a(SSID)ssj0001524622 035 $a(PQKBManifestationID)12633645 035 $a(PQKBTitleCode)TC0001524622 035 $a(PQKBWorkID)11484636 035 $a(PQKB)11551869 035 $a(Au-PeEL)EBL1980476 035 $a(CaPaEBR)ebr11025991 035 $a(CaONFJC)MIL295591 035 $a(OCoLC)905984644 035 $a(CaSebORM)9780323313025 035 $a(MiAaPQ)EBC1980476 035 $a(EXLCZ)993710000000365872 100 $a20150314h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMicrosystems for bioelectronics $escaling and performance limits /$fVictor V. Zhirnov, Ralph K. Cavin III ; acquisition editor Simon Holt ; designer Greg Harris 205 $aSecond edition. 210 1$aAmsterdam, [Netherlands] :$cWilliam Andrew,$d2015. 210 4$dİ2015 215 $a1 online resource (298 p.) 225 1 $aMicro and Nano Technologies 300 $aDescription based upon print version of record. 311 $a0-323-31302-7 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover; Title Page; Copyright Page; Contents; Preface-Second Edition; Chapter 1 - The nanomorphic cell: atomic-level limits of computing; List of Acronyms; 1.1 - Introduction; 1.2 - Electronic Scaling; 1.3 - Nanomorphic Cell: Atomic Level Limits of Computing; 1.4 - The Nanomorphic Cell vis-a?-vis the Living Cell; 1.5 - Cell Parameters: Mass, Size, and Energy; 1.6 - Current Status of Technologies for Autonomous Microsystems; 1.6.1 - Implantable and Ingestible Medical Devices; 1.6.2 - Intelligent Integrated Sensor Systems; 1.7 - Summary; 1.8 - Appendix; References 327 $aChapter 2 - Basic physics of ICTList of Acronyms; 2.1 - Introduction; 2.2 - A central concept: Energy barrier; 2.3 - Physical origin of the barrier potential in materials systems; 2.4 - Two-sided barrier; 2.4.1 - Example: Electromechanical switch; 2.5 - Model Case: An Electrical Capacitor; 2.6 - Barrier transitions; 2.7 - Quantum Confinement; 2.8 - Quantum conductance; 2.9 - Electron transport in the presence of barriers; 2.9.1 - Over-barrier transport; 2.9.2 - Tunneling transport; 2.10 - Barriers in semiconductors; 2.10.1 - Metal-semiconductor interfaces; 2.10.2 - pn-junction; 2.11 - Summary 327 $aReferencesChapter 3 - Energy in the small: micro-scale energy sources; List of Acronyms; 3.1 - Introduction; 3.2 - Storage Capacitor; 3.2.1 - Example: Maximum energy stored in a capacitor; 3.3 - Electrochemical Energy: Fundamentals of Galvanic Cells; 3.3.1 - Energy Stored in the Galvanic Cell; 3.3.2 - Power Delivery by a Galvanic Cell; 3.3.3 - Current Status of Miniature Galvanic Cells; 3.3.4 - Miniature Biofuel Cells; 3.3.5 - Remarks on Biocompatibility; 3.4 - Miniature Supercapacitors; Miniature supercapacitors: Status and potential directions; 3.5 - Energy from Radioisotopes 327 $a3.5.1 - Radioisotope Energy Sources3.5.2 - Radioisotopic Energy Conversion; 3.5.3 - Practical Miniature Radioisotope Energy Sources; 3.6 - Remarks on Energy Harvesting; 3.6.1 - Photovoltaics; 3.6.2 - Radio Frequency (RF)/Microwave Energy Harvesting; 3.6.3 - Kinetic Energy Harvesting; 3.6.4 - Thermal Energy Harvesting; 3.7 - Summary; 3.8 - Appendix. A kinetic model to assess the limits of heat removal; References; Chapter 4 - Fundamental limits for logic and memory; List of Acronyms; 4.1 - Introduction; 4.2 - Information and Information Processing; 4.3 - Basic Physics of Binary Elements 327 $a4.3.1 - Distinguishable States4.3.2 - Energy Barrier Framework for the Operating Limits of Binary Switches; A. Limits on barrier height; B. Limits on Size; C. Limits on Speed; D. Combined Effect of Classic and Quantum Errors; 4.3.3 - A summary of device scaling limits; 4.3.4 - Charge-based Binary Logic Switch; 4.3.5 - Charge-based Memory Element; DRAM; SRAM; Floating gate/flash memory; 4.4 - System-level Analysis; 4.4.1 - Tiling Considerations: Device density; 3D Tiling of Flash Memory; 4.4.2 - Energy adjustment for system reliability; 4.4.3 - Models for Connected Binary Switches 327 $aA. Juxtaposed Switches 330 $a The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrinking scale of microsystems. The new edition of Microsystems for Bioelectronics addresses those needs and represents a major revision, expansion and advancement of the previous edition. This book considers physical principles and trends in extremely scaled autonomous microsystems such as integrated 410 0$aMicro & nano technologies. 606 $aMedical electronics 606 $aNanomedicine 606 $aBioelectronics 615 0$aMedical electronics. 615 0$aNanomedicine. 615 0$aBioelectronics. 676 $a610.28 700 $aZhirnov$b Victor V.$01638005 702 $aCavin$b Ralph K. 702 $aHolt$b Simon 702 $aHarris$b Greg 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828840303321 996 $aMicrosystems for bioelectronics$93980148 997 $aUNINA