LEADER 01548oam 2200445zu 450 001 996197738403316 005 20210806235858.0 010 $a1-5090-9841-0 035 $a(CKB)1000000000278127 035 $a(SSID)ssj0000395906 035 $a(PQKBManifestationID)12155204 035 $a(PQKBTitleCode)TC0000395906 035 $a(PQKBWorkID)10473851 035 $a(PQKB)11091504 035 $a(EXLCZ)991000000000278127 100 $a20160829d2006 uy 101 0 $aeng 181 $ctxt 182 $cc 183 $acr 200 10$a14th IEEE International Conference on Program Comprehension (ICPC 2006) : 14-16 June 2006, Athens, Greece : proceedings 210 31$a[Place of publication not identified]$cIEEE Computer Society$d2006 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-7695-2601-2 606 $aComputer programs$vCongresses 606 $aSoftware maintenance$vCongresses 606 $aEngineering & Applied Sciences$2HILCC 606 $aComputer Science$2HILCC 615 0$aComputer programs 615 0$aSoftware maintenance 615 7$aEngineering & Applied Sciences 615 7$aComputer Science 676 $a005.3 712 02$aIEEE Computer Society 712 12$aIEEE International Conference on Program Comprehension 801 0$bPQKB 906 $aPROCEEDING 912 $a996197738403316 996 $a14th IEEE International Conference on Program Comprehension (ICPC 2006) : 14-16 June 2006, Athens, Greece : proceedings$92351967 997 $aUNISA LEADER 02192nam 2200589 450 001 9910828508203321 005 20220825045337.0 010 $a0-8218-7609-0 035 $a(CKB)3240000000069549 035 $a(EBL)3112959 035 $a(SSID)ssj0000629262 035 $a(PQKBManifestationID)11393253 035 $a(PQKBTitleCode)TC0000629262 035 $a(PQKBWorkID)10718258 035 $a(PQKB)11693322 035 $a(MiAaPQ)EBC3112959 035 $a(RPAM)934343 035 $a(PPN)197103413 035 $a(EXLCZ)993240000000069549 100 $a19830913h19831983 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCentral extensions, Galois groups, and ideal class groups of number fields /$fA. Fro?hlich 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1983] 210 4$dİ1983 215 $a1 online resource (96 p.) 225 1 $aContemporary mathematics,$x0271-4132 ;$v24 300 $aDescription based upon print version of record. 311 $a0-8218-5022-9 320 $aIncludes bibliographical references. 327 $aTable of Contents -- 1. Background from Class Field Theory -- 2. The Genus Field and the Genus Group -- 3. Central Extensions -- 4. Maximal Quasi Central Extensions, Maximal L-Extensions and Maximal Class Two Extensions -- 5. More on Class Groups -- 6. Some Remarks on History and Literature -- Literature. 410 0$aContemporary mathematics (American Mathematical Society).$v24$x0271-4132 606 $aClass field theory 606 $aField extensions (Mathematics) 606 $aGalois theory 606 $aClass groups (Mathematics) 615 0$aClass field theory. 615 0$aField extensions (Mathematics) 615 0$aGalois theory. 615 0$aClass groups (Mathematics) 676 $a512/.3 700 $aFro?hlich$b A$g(Albrecht),$f1916-$055747 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828508203321 996 $aCentral extensions, Galois groups, and ideal class groups of number fields$94072457 997 $aUNINA