LEADER 05576nam 22006974a 450 001 9910828470503321 005 20200520144314.0 010 $a9786610269488 010 $a9781280269486 010 $a1280269480 010 $a9780470093924 010 $a0470093927 010 $a9780470012536 010 $a0470012536 035 $a(CKB)1000000000018885 035 $a(EBL)191308 035 $a(OCoLC)475901132 035 $a(SSID)ssj0000161773 035 $a(PQKBManifestationID)11155173 035 $a(PQKBTitleCode)TC0000161773 035 $a(PQKBWorkID)10219336 035 $a(PQKB)10457131 035 $a(MiAaPQ)EBC191308 035 $a(Au-PeEL)EBL191308 035 $a(CaPaEBR)ebr10113929 035 $a(CaONFJC)MIL26948 035 $a(OCoLC)1292941968 035 $a(FINmELB)ELB178949 035 $a(Perlego)2768435 035 $a(EXLCZ)991000000000018885 100 $a20040506d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aGenomics, proteomics, and vaccines /$feditor, Guido Grandi 205 $a1st ed. 210 $aChichester ;$aHoboken, NJ $cWiley$dc2004 215 $a1 online resource (345 p.) 300 $aDescription based upon print version of record. 311 08$a9780470856161 311 08$aPrint version: Genomics, proteomics, and vaccines Chichester ; Wiley, 2004. (OCoLC)52486434 0470856165 320 $aIncludes bibliographical references and index. 327 $aGenomics, Proteomics and Vaccines -- Contents -- Preface -- List of contributors -- PART 1: INTRODUCTION -- 1 Vaccination: Past, Present and Future -- 1.1 Introduction -- 1.2 Vaccination: the past -- 1.3 Vaccination: the present -- 1.4 Vaccination: the future -- 1.5 Conclusion: the intangible value of vaccination -- 2 Bioinformatics, DNA Microarrays and Proteomics in Vaccine Discovery: Competing or Complementary Technologies? -- 2.1 Introduction -- 2.2 From genome sequence to vaccine discovery -- 2.3 A case study: the anti-meningococcus B vaccine -- 2.4 Comparison of the three approaches -- 2.5 Conclusions: a 'nomics' approach to vaccine discovery -- PART 2: TECHNOLOGIES -- 3 Genome Sequencing and Analysis -- 3.1 Introduction -- 3.2 Genome sequencing -- 3.3 Genome analysis -- 3.4 Conclusion -- 4 Understanding DNA Microarrays: Sources and Magnitudes of Variances in DNA Microarray Data Sets -- 4.1 Introduction -- 4.2 DNA array formats -- 4.3 Data analysis methods -- 4.4 Sources and magnitudes of noise in DNA microarray experiments -- 4.5 Conclusions -- Acknowledgements -- 5 The Proteome, Anno Domini Two Zero Zero Three -- 5.1 Introduction -- 5.2 Some definitions -- 5.3 What methods exist to tackle the proteome complexity?5.4 Quantitative proteomics -- 5.5 Pre-fractionation in proteome analysis -- 5.6 Multi-dimensional chromatography -- 5.7 Protein chip arrays -- 5.8 Imaging mass spectrometry -- Acknowledgements -- 6 Mass Spectrometry in Proteomics -- 6.1 Introduction -- 6.2 MS technology -- 6.3 Principle of protein identification based on MS data -- 6.4 Proteomics workflows -- 7 High Throughput Cloning, Expression and Purification Technologies -- 7.1 Introduction -- 7.2 Gene cloning -- 7.3 Protein expression -- 7.4 High-throughput protein purification -- 7.5 Validation of the pipeline and outlook7.6 Conclusion -- PART 3: APPLICATIONS -- 8 Meningococcus B: from Genome to Vaccine -- 8.1 Meningococcus, a major cause of bacterial meningitis -- 8.2 Group B meningococcus as an example of reverse vaccinology -- 8.3 Conclusions -- 9 Vaccines Against Pathogenic Streptococci -- 9.1 Introduction -- 9.2 Comparative genomics of streptococci -- 9.3 A vaccine against group B streptococcus -- 9.4 A vaccine against group A streptococcus -- 9.5 Conclusions -- 10 Identification of the 'Antigenome' - a Novel Tool for Design and Development of Subunit Vaccines Against Bacterial Pathogens -- 10.1 Introduction -- 10.2 Small DNA insert libraries - a tool to cover a pathogen's 'antigenome' -- 10.3 Proper display platforms -- 10.4 Selected human sera to provide imprints of pathogen encounters -- 10.5 Cognate antibodies reveal the 'antigenome' of a pathogen -- 10.6 How to retrieve from the 'antigenome' the candidate antigens for vaccine development -- 10.7 Summary and discussion -- 11 Searching the Chlamydia Genomes for New Vaccine Candidates -- 11.1 Old problems and new perspectives for chlamydial vaccines. 330 $aWhile the sequence of the human genome sequence has hit the headlines, extensive exploitation of this for practical applications is still to come. Genomic and post-genomic technologies applied to viral and bacterial pathogens, which are almost equally important from a scientific perspective, have the potential to be translated into useful products and processes much more rapidly.Genomics, Proteomics and Vaccines introduces the history of vaccinology and discusses how vaccines are expected to evolve in the future. It describes the relevant technologies, including genome sequencing and a 606 $aGenomics 606 $aVaccines$xBiotechnology 606 $aProteomics 615 0$aGenomics. 615 0$aVaccines$xBiotechnology. 615 0$aProteomics. 676 $a572.8/6 701 $aGrandi$b Guido$055106 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828470503321 996 $aGenomics, proteomics, and vaccines$93957635 997 $aUNINA