LEADER 03559nam 2200589 450 001 9910828112203321 005 20170822144316.0 010 $a1-4704-0621-7 035 $a(CKB)3360000000465188 035 $a(EBL)3114101 035 $a(SSID)ssj0000888782 035 $a(PQKBManifestationID)11566301 035 $a(PQKBTitleCode)TC0000888782 035 $a(PQKBWorkID)10865783 035 $a(PQKB)10741288 035 $a(MiAaPQ)EBC3114101 035 $a(RPAM)16836587 035 $a(PPN)19541893X 035 $a(EXLCZ)993360000000465188 100 $a20150417h20112011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAxes in outer space /$fMichael Handel, Lee Mosher 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2011. 210 4$dİ2011 215 $a1 online resource (104 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 213, Number 1004 300 $a"Volume 213, Number 1004 (end of volume)." 311 $a0-8218-6927-2 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph"" 327 $a""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" 327 $a""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" 327 $a""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 213, Number 1004. 606 $aGeometric group theory 606 $aLow-dimensional topology 615 0$aGeometric group theory. 615 0$aLow-dimensional topology. 676 $a514.22 700 $aHandel$b Michael$f1949-$01641650 702 $aMosher$b Lee$f1957- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828112203321 996 $aAxes in outer space$94038353 997 $aUNINA