LEADER 05672nam 22007814a 450 001 9910827984303321 005 20200520144314.0 010 $a9786610272549 010 $a9781280272547 010 $a1280272546 010 $a9780470300619 010 $a0470300612 010 $a9780470870181 010 $a0470870184 010 $a9780470870198 010 $a0470870192 035 $a(CKB)1000000000018903 035 $a(EBL)219769 035 $a(OCoLC)56476684 035 $a(SSID)ssj0000269418 035 $a(PQKBManifestationID)11193635 035 $a(PQKBTitleCode)TC0000269418 035 $a(PQKBWorkID)10262294 035 $a(PQKB)11274900 035 $a(MiAaPQ)EBC219769 035 $a(Au-PeEL)EBL219769 035 $a(CaPaEBR)ebr10114054 035 $a(CaONFJC)MIL27254 035 $a(OCoLC)54537231 035 $a(FINmELB)ELB179126 035 $a(Perlego)2788232 035 $a(EXLCZ)991000000000018903 100 $a20040301d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aWave and scattering methods for numerical simulation /$fStefan Bilbao 205 $a1st ed. 210 $aChichester, West Sussex, England ;$aHoboken, N.J. $cJ. Wiley$dc2004 215 $a1 online resource (382 p.) 300 $aDescription based upon print version of record. 311 08$a9780470870174 311 08$a0470870176 320 $aIncludes bibliographical references (p. [333]-353) and index. 327 $aWAVE AND SCATTERING METHODS FOR NUMERICAL SIMULATION; Contents; Preface; Foreword; 1 Introduction; 1.1 An Overview of Scattering Methods; 1.1.1 Remarks on Passivity; 1.1.2 Case Study: The Kelly-Lochbaum Digital Speech Synthesis Model; 1.1.3 Digital Waveguide Networks; 1.1.4 A General Approach: Multidimensional Circuit Representations and Wave Digital Filters; 1.2 Questions; 2 Wave Digital Filters; 2.1 Classical Network Theory; 2.1.1 N-ports; 2.1.2 Power and Passivity; 2.1.3 Kirchhoff's Laws; 2.1.4 Circuit Elements; 2.2 Wave Digital Elements and Connections; 2.2.1 The Bilinear Transform 327 $a2.2.2 Wave Variables2.2.3 Pseudopower and Pseudopassivity; 2.2.4 Wave Digital Elements; 2.2.5 Adaptors; 2.2.6 Signal and Coefficient Quantization; 2.2.7 Vector Wave Variables; 2.3 Wave Digital Filters and Finite Differences; 3 Multidimensional Wave Digital Networks; 3.1 Symmetric Hyperbolic Systems; 3.2 Coordinate Changes and Grid Generation; 3.2.1 Structure of Coordinate Changes; 3.2.2 Coordinate Changes in (1 + 1)D; 3.2.3 Coordinate Changes in Higher Dimensions; 3.3 MD-passivity; 3.4 MD Circuit Elements; 3.4.1 The MD Inductor; 3.4.2 Other MD Elements 327 $a3.4.3 Discretization in the Spectral Domain3.4.4 Other Spectral Mappings; 3.5 The (1 + 1)D Advection Equation; 3.5.1 A Multidimensional Kirchhoff Circuit; 3.5.2 Stability; 3.5.3 An Upwind Form; 3.6 The (1 + 1)D Transmission Line; 3.6.1 MDKC for the (1 + 1)D Transmission Line Equations; 3.6.2 Digression: The Inductive Lattice Two-port; 3.6.3 Energetic Interpretation; 3.6.4 An MDWD Network for the (1 + 1)D Transmission Line; 3.6.5 Simplified Networks; 3.7 The (2 + 1)D Parallel-plate System; 3.7.1 MDKC and MDWD Network; 3.8 Finite Difference Interpretation 327 $a3.8.1 MDWD Networks as Multistep Schemes3.8.2 Numerical Phase Velocity and Parasitic Modes; 3.9 Initial Conditions; 3.10 Boundary Conditions; 3.10.1 MDKC Modeling of Boundaries; 3.11 Balanced Forms; 3.12 Higher-order Accuracy; 4 Digital Waveguide Networks; 4.1 FDTD and TLM; 4.2 Digital Waveguides; 4.2.1 The Bidirectional Delay Line; 4.2.2 Impedance; 4.2.3 Wave Equation Interpretation; 4.2.4 Note on the Different Definitions of Wave Quantities; 4.2.5 Scattering Junctions; 4.2.6 Vector Waveguides and Scattering Junctions; 4.2.7 Transitional Note; 4.3 The (1 + 1)D Transmission Line 327 $a4.3.1 First-order System and the Wave Equation4.3.2 Centered Difference Schemes and Grid Decimation; 4.3.3 A (1 + 1)D Waveguide Network; 4.3.4 Waveguide Network and the Wave Equation; 4.3.5 An Interleaved Waveguide Network; 4.3.6 Varying Coefficients; 4.3.7 Incorporating Losses and Sources; 4.3.8 Numerical Phase Velocity and Dispersion; 4.3.9 Boundary Conditions; 4.4 The (2 + 1)D Parallel-plate System; 4.4.1 Defining Equations and Centered Differences; 4.4.2 The Waveguide Mesh; 4.4.3 Reduced Computational Complexity and Memory Requirements in the Standard Form of the Waveguide Mesh 327 $a4.4.4 Boundary Conditions 330 $aScattering-based numerical methods are increasingly applied to the numerical simulation of distributed time-dependent physical systems. These methods, which possess excellent stability and stability verification properties, have appeared in various guises as the transmission line matrix (TLM) method, multidimensional wave digital (MDWD) filtering and digital waveguide (DWN) methods. This text provides a unified framework for all of these techniques and addresses the question of how they are related to more standard numerical simulation techniques. Covering circuit/scattering models in electr 606 $aElectric filters, Wave-guide 606 $aElectric filters, Digital 606 $aSimulation methods 615 0$aElectric filters, Wave-guide. 615 0$aElectric filters, Digital. 615 0$aSimulation methods. 676 $a620/.001/1 700 $aBilbao$b Stefan D$0521937 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827984303321 996 $aWave and scattering methods for numerical simulation$93930532 997 $aUNINA