LEADER 03588nam 2200553 450 001 9910827882203321 005 20230120014748.0 010 $a1-4832-6920-5 035 $a(CKB)3710000000200875 035 $a(EBL)1901720 035 $a(SSID)ssj0001267230 035 $a(PQKBManifestationID)12469125 035 $a(PQKBTitleCode)TC0001267230 035 $a(PQKBWorkID)11255124 035 $a(PQKB)10115985 035 $a(MiAaPQ)EBC1901720 035 $a(EXLCZ)993710000000200875 100 $a20150202h19721972 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aProbability and mathematical statistics $ean introduction /$fEugene Lukacs 210 1$aNew York ;$aLondon :$cAcademic Press,$d1972. 210 4$dİ1972 215 $a1 online resource (255 p.) 300 $aDescription based upon print version of record. 311 $a1-322-55961-9 311 $a0-12-459850-1 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aFront Cover; Probability and Mathematical Statistics: An Introduction; Copyright Page; Table of Contents; Preface; Introduction; References; PART I: PROBABILITY THEORY; Chapter 1. The Probability Space; 1.1 The Outcome Space; 1.2 Probabilities; 1.3 The Axioms; 1.4 Problems; References; Chapter 2. Elementary Properties of Probability Spaces; 2.1 Simple Consequences of the Axioms; 2.2 Conditional Probability and Independence; 2.3 Finite Probability Spaces; 2.4 Problems; Chapter 3. Random Variables and Their Probability Distributions; 3.1 Random Variables; 3.2 Distribution Functions 327 $a3.3 Examples of Discrete Distributions3.4 Examples of Absolutely Continuous Distributions; 3.5 Multivariate Distributions; 3.6 Problems; References; Chapter 4. Typical Values; 4.1 The Mathematical Expectation of a Random Variable; 4.2 Expectations of Functions of Random Variables; 4.3 Properties of Expectations; 4.4 Moments; 4.5 Regression; 4.6 Problems; Reference; Chapter 5. Limit Theorems; 5.1 Laws of Large Numbers; 5.2 The Central Limit Theorem; 5.3 The Poisson Approximation to the Binomial; 5.4 Problems; References; Chapter 6. Some Important Distributions 327 $a6.1 The Distribution of the Sum of Independent,Absolutely Continuous Random Variables6.2 Addition of Independent Normal Random Variables; 6.3 The Chi-Square Distribution; 6.3 The Chi-Square Distribution; 6.5 Problems; PART II: MATHEMATICAL STATISTICS; Chapter 7. Sampling; 7.1 Statistical Data; 7.2 Sample Characteristics; 7.3 Moments and Distributions of Sample Characteristics; 7.4 Problems; References; Chapter 8. Estimation; 8.1 Properties of Estimates; 8.2 Point Estimation; 8.3 Interval Estimation; 8.4 Problems; References; Chapter 9. Testing Hypotheses; 9.1 Statistical Hypotheses 327 $a9.2 The Power of a Test9.3 The /-Test; 9.4 Nonparametric Methods; 9.5 Problems; References; Appendix A. Some Combinatorial Formulas; Appendix B.The Gamma Function; Appendix C. Proof of the Central Limit Theorem; Appendix D. Tables; Answers to Selected Problems; Index 330 $aProbability and Mathematical Statistics 606 $aProbabilities 606 $aMathematical statistics 615 0$aProbabilities. 615 0$aMathematical statistics. 676 $a519.2 700 $aLukacs$b Eugene$026271 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827882203321 996 $aProbability and mathematical statistics$9258031 997 $aUNINA