LEADER 01986nas 2200433 n 450 001 990008986230403321 005 20240229084235.0 011 $a0305-4403 035 $a000898623 035 $aFED01000898623 035 $a(Aleph)000898623FED01 035 $a000898623 091 $2CNR$aP 00045037 100 $a20161109a19749999km-y0itaa50------ba 101 0 $aeng 102 $aGB 110 $aauu-------- 200 1 $aJournal of archaeological science 207 1$a1974- 210 $aLondon$cAcademic Press 452 0$12001$aJournal of archaeological science (Online) 530 0 $aJournal of archaeological science 675 $a93 675 $a571 675 $a930 675 $a26 801 0$aIT$bACNP$c20090723 859 4 $uhttp://acnp.cib.unibo.it/cgi-ser/start/it/cnr/dc-p1.tcl?catno=31088&person=false&language=ITALIANO&libr=&libr_th=unina1$zBiblioteche che possiedono il periodico 901 $aSE 912 $a990008986230403321 958 $aBiblioteca "Roberto Stroffolini" - Dipartimento di Scienze Fisiche dell'Università Federico II$b1990-2007;$c2000;2002;2007;$fFI1 958 $aBiblioteca. Dipartimento delle Scienze Biologiche dell'Università Federico II. Sezione di Antropologia$fDBEC$b1986-1987;1990- 959 $aFI1 959 $aDBEC 996 $aJournal of archaeological science$9794075 997 $aUNINA AP1 8 $6866-01$aNA079 Biblioteca "Roberto Stroffolini" - Dipartimento di Scienze Fisiche dell'Università Federico II$eVia Cintia-Monte S. Angelo, 80126 Napoli (NA)$m081.676253;676756;676443$m081.676434$nit AP1 8 $6866-02$aNA133 Biblioteca. Dipartimento delle Scienze Biologciche dell'Università Federico II. Sezione di Antropologia$ev. Mezzocannone,8, 80134 Napoli (NA)$m0812535032$m0812535032$nit AP2 40$aacnp.cib.unibo.it$nACNP Italian Union Catalogue of Serials$uhttp://acnp.cib.unibo.it/cgi-ser/start/it/cnr/df-p.tcl?catno=31088&language=ITALIANO&libr=&person=&B=1&libr_th=unina&proposto=NO LEADER 05543nam 2200745Ia 450 001 9910827777703321 005 20200520144314.0 010 $a9781118761175 010 $a1118761170 010 $a9781118761120 010 $a111876112X 010 $a9781118761144 010 $a1118761146 035 $a(CKB)2670000000401989 035 $a(EBL)1323957 035 $a(OCoLC)854977100 035 $a(SSID)ssj0001034882 035 $a(PQKBManifestationID)11586777 035 $a(PQKBTitleCode)TC0001034882 035 $a(PQKBWorkID)11028913 035 $a(PQKB)10302674 035 $a(MiAaPQ)EBC1323957 035 $a(Au-PeEL)EBL1323957 035 $a(CaPaEBR)ebr10738691 035 $a(CaONFJC)MIL507242 035 $a(Perlego)1001372 035 $a(EXLCZ)992670000000401989 100 $a20111102d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLithium batteries and other electrochemical storage systems /$fChristian Glaize, Sylvie Genies 205 $a1st ed. 210 $aHoboken, NJ $cJohn Wiley and Sons$d2013 215 $a1 online resource (374 p.) 225 1 $aISTE 300 $aIncludes index. 311 08$a9781299759916 311 08$a1299759912 311 08$a9781848214965 311 08$a1848214960 327 $aCover; Title Page; Contents; Preface; Acknowledgements; Introduction; Part 1. Storage Requirements Characteristics Of Secondary Batteries Examples Of Use; Chapter 1. Breakdown of Storage Requirements; 1.1. Introduction; 1.2. Domains of application for energy storage; 1.2.1. Starter batteries; 1.2.2. Traction batteries; 1.2.3. Stationary batteries; 1.2.4. Batteries for mobile or nomadic devices; 1.3. Review of storage requirements and appropriate technologies; 1.4. Conclusion; Chapter 2. Definitions and Measuring Methods; 2.1. Introduction; 2.2. Terminology; 2.2.1. Accumulator 327 $a2.2.2. Element, elementary cell, electrolyte2.2.3. Electrode, half-element, half-cell; 2.2.4. Oxidation, reduction, anode, cathode; 2.2.5. Active material; 2.2.6. Voltage; 2.2.7. Battery of accumulators, modules, packs, BMS; 2.3. Definitions of the characteristics; 2.3.1. Nominal voltage; 2.3.2. Voltage under current; 2.3.3. Capacities; 2.4. States of the battery; 2.4.1. Depth of discharge; 2.4.2. State of charge; 2.4.3. State of energy; 2.4.4. State of health; 2.4.5. State of function; 2.4.6. Theoretical gravimetric capacity; 2.4.7. Practical gravimetric capacity; 2.4.8. Volumetric capacity 327 $a2.4.9. Specific capacity2.4.10. Direct-current internal resistance and short-circuit current; 2.4.11. AC internal resistance; 2.4.12. Impedance, impedancemetry, impedance spectroscopy; 2.4.13. Stored energy and deliverable energy; 2.4.14. Gravimetric energy density; 2.4.15. Volumetric energy density; 2.4.16. Specific energy; 2.4.17. Gravimetric power and volumetric power; 2.5. Faradaic efficiency; 2.6. Self-discharge; 2.7. Acceptance current; 2.8. Conclusion; 2.9. Appendix 1: Nernst's law; 2.9.1. Redox potential of an electrode; 2.9.2. Electromotive force of an electrochemical cell 327 $a2.9.3. Nernst's law2.9.4. Activity of the species; 2.9.5. Example of the application of Nernst's law to a lithium secondary battery using the insertion mechanism; 2.10. Appendix 2: Double layer; 2.11. Appendix 3: Warburg impedance; 2.12. Solutions to the exercises in Chapter 2; Chapter 3. Practical Examples Using Electrochemical Storage; 3.1. Introduction; 3.1.1. Starter currents for internal combustion engines in cars; 3.1.2. Power required by a telecommunications transceiver in an isolated site; 3.1.3. House in an isolated site; 3.1.4. Currents in an operational electric car battery 327 $a3.1.5. Currents during the phase of recharging of batteries in electric cars3.1.6. Autonomous urban lighting; 3.2. Conclusion; 3.3. Solution to the exercises in Chapter 3; Part 2. Lithium Batteries; Chapter 4. Introduction to Lithium Batteries; 4.1. History of lithium batteries; 4.2. Categories of lithium batteries; 4.3. The different operational mechanisms for lithium batteries; 4.3.1. Intercalation (or insertion) materials; 4.3.2. Alloys; 4.3.3. Direction conversion materials; 4.3.4. Differences of voltage profiles between intercalation materials, alloys and conversion materials 327 $a4.3.5. Properties of the electrode materials 330 $a Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.