LEADER 01137nam--2200409---450 001 990003134250203316 005 20240308150612.0 035 $a000313425 035 $aUSA01000313425 035 $a(ALEPH)000313425USA01 035 $a000313425 100 $a20080731d1966----km-y0itay0103----ba 101 $aita 102 $aIT 105 $aa|||||||001yy 200 1 $aFrancisco de Zurbaran$f[testi di Raffaello Causa] 210 $aMilano$cFabbri$d1966 215 $a[8] c., XVI p. di tav.$cill.$d36 cm 225 2 $a<> maestri del colore$v181 410 0$12001$a<> maestri del colore$v181 454 1$12001 461 1$1001-------$12001 517 $aZurbaran 600 0 $aZurbaran,$bFrancisco : de 676 $a759.6 700 1$aZURBARAN,$bFrancisco : de$0219118 702 1$aCAUSA,$bRaffaello 801 0$aIT$bsalbc$gISBD 912 $a990003134250203316 951 $aV A 1 MC XIV$b6063 DBC$cV A 951 $aXV 21 1083$bDispac$cXV 21 959 $aBK 969 $aDBC 969 $aFPAV 979 $aDBC$b90$c20080731$lUSA01$h1026 996 $aFrancisco de Zurbaran$9574297 997 $aUNISA LEADER 03630nam 22006854a 450 001 9910827758803321 005 20200520144314.0 010 $a1-107-13080-8 010 $a1-280-41832-X 010 $a9786610418329 010 $a0-511-17882-4 010 $a1-139-14721-8 010 $a0-511-06356-3 010 $a0-511-05723-7 010 $a0-511-30598-2 010 $a0-511-54272-0 010 $a0-511-07202-3 035 $a(CKB)1000000000018033 035 $a(EBL)217793 035 $a(OCoLC)70747289 035 $a(SSID)ssj0000129990 035 $a(PQKBManifestationID)11134185 035 $a(PQKBTitleCode)TC0000129990 035 $a(PQKBWorkID)10082005 035 $a(PQKB)11121341 035 $a(UkCbUP)CR9780511542725 035 $a(Au-PeEL)EBL217793 035 $a(CaPaEBR)ebr10070340 035 $a(CaONFJC)MIL41832 035 $a(MiAaPQ)EBC217793 035 $a(PPN)261308521 035 $a(EXLCZ)991000000000018033 100 $a20020325d2003 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aContinuous lattices and domains /$fG. Gierz ... [et al.] 205 $a1st ed. 210 $aCambridge ;$aNew York $cCambridge University Press$d2003 215 $a1 online resource (xxxvi, 591 pages) $cdigital, PDF file(s) 225 1 $aEncyclopedia of mathematics and its applications ;$vv. 93 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-80338-1 320 $aIncludes bibliographical references (p. 523-567) and index. 327 $aForeword to A Compendium of Continuous Lattices -- Introduction to A Compendium of Continuous Lattices -- A Primer on Ordered Sets and Lattices -- I. Order Theory of Domains -- II. The Scott Topology -- III. The Lawson Topology -- IV. Morphisms and Functors -- V. Spectral Theory of Continuous Lattices -- VI. Compact Posets and Semilattices -- VII. Topological Algebra and Lattice Theory: Applications -- Dissertation and Master's Theses -- Memos Circulated in the Seminar on Continuity in Semilattices (SCS). 330 $aInformation content and programming semantics are just two of the applications of the mathematical concepts of order, continuity and domains. The authors develop the mathematical foundations of partially ordered sets with completeness properties of various degrees, in particular directed complete ordered sets and complete lattices. Uniquely, they focus on partially ordered sets that have an extra order relation, modelling the notion that one element 'finitely approximates' another, something closely related to intrinsic topologies linking order and topology. Extensive use is made of topological ideas, both by defining useful topologies on the structures themselves and by developing close connections with numerous aspects of topology. The theory so developed not only has applications to computer science but also within mathematics to such areas as analysis, the spectral theory of algebras and the theory of computability. This authoritative, comprehensive account of the subject will be essential for all those working in the area. 410 0$aEncyclopedia of mathematics and its applications ;$vv. 93. 606 $aContinuous lattices 615 0$aContinuous lattices. 676 $a511.3/3 701 $aGierz$b Gerhard$056921 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827758803321 996 $aContinuous lattices and domains$94014057 997 $aUNINA