LEADER 04085nam 2200589 450 001 9910827464903321 005 20200520144314.0 010 $a1-119-26290-9 010 $a1-119-26289-5 035 $a(CKB)4330000000009768 035 $a(EBL)4558345 035 $a(MiAaPQ)EBC4558345 035 $a(Au-PeEL)EBL4558345 035 $a(CaPaEBR)ebr11224192 035 $a(CaONFJC)MIL933678 035 $a(OCoLC)952247557 035 $a(EXLCZ)994330000000009768 100 $a20160712h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMilling simulation $emetal milling mechanics, dynamics and clamping principles /$fWeihong Zhang, Min Wan 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE Ltd :$cJohn Wiley and Sons Inc,$d2016. 210 4$dİ2016 215 $a1 online resource (276 p.) 225 1 $aNumerical Methods in Engineering Series 300 $aDescription based upon print version of record. 311 $a1-119-26291-7 311 $a1-78630-015-X 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; Preface; Introduction; 1: Cutting Forces in Milling Processes; 2: Surface Accuracy in Milling Processes; 3: Dynamics of Milling Processes; 4: Mathematical Modeling of the Workpiece-Fixture System; Bibliography; Index; Other titles from ISTE in Numerical Methods in Engineering; EULA; I.1. Cutting force modeling; I.2. Surface quality simulation; I.3. Chatter stability analysis; I.4. Clamping system design; I.5. Purpose of this book; 1.1. Formulations of cutting forces; 1.2. Milling process geometry ; 1.3. Identification of the cutting force coefficients 327 $a1.4. Ternary cutting force model including bottom edge cutting effect1.5. Cutting force prediction in peripheral milling of a curved surface; 2.1. Predictions of surface form errors; 2.2. Control strategy of surface form error; 2.3. Surface topography in milling processes; 3.1. Governing equation of the milling process; 3.2. Method for obtaining the frequency response function; 3.3. Prediction of stability lobe; 4.1. Criteria of locating scheme correctness; 4.2. Analysis of locating scheme correctness; 4.3. Analysis of workpiece stability 327 $a4.4. Modeling of the workpiece-fixture geometric default and compliance4.5. Optimal design of the fixture clamping sequence; 1.1.1. Mechanics of orthogonal cutting; 1.1.2. Cutting force model for a general milling cutter; 1.2.1. Calculations of uncut chip thickness; 1.2.2. Determination of entry and exit angles; 1.3.1. Calibration method for general end mills; 1.3.2. Calibration method in the frequency domain; 1.3.3. Calibration method involving four cutter runout parameters; 1.3.4. Identification of shear stress, shear angle and friction angle using milling tests 327 $a3.2.1. Derivation of calculation formulations3.2.2. Identification of model parameters; 3.3.1. Improved semi-discretization method; 3.3.2. Lowest envelope method; 3.3.3. Time-domain simulation method; 4.1.1. The DOFs constraining principle; 4.1.2. The locating scheme; 4.1.3. Judgment criteria of locating scheme correctness; 4.1.4. Analysis of locating scheme incorrectness; 4.2.1. Localization source errors; 4.2.2. Fixture modeling; 4.2.3. Locating scheme correctness; 4.3.1. Modeling of workpiece stability; 4.3.2. Solution techniques to the model of workpiece stability 327 $a4.4.1. Source error analysis 410 0$aNumerical methods in engineering series. 606 $aMilling (Metal-work)$vHandbooks, manuals, etc 606 $aMilling (Metal-work)$xData processing 615 0$aMilling (Metal-work) 615 0$aMilling (Metal-work)$xData processing. 676 $a671.35 700 $aZhang$b Weihong$0932168 702 $aWan$b Min 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827464903321 996 $aMilling simulation$94101729 997 $aUNINA