LEADER 03227oam 2200673I 450 001 9910827455603321 005 20240514054732.0 010 $a0-429-10755-2 010 $a1-4398-5428-9 024 7 $a10.1201/b10811 035 $a(CKB)2550000000064839 035 $a(EBL)800958 035 $a(OCoLC)769189662 035 $a(SSID)ssj0000516759 035 $a(PQKBManifestationID)11343044 035 $a(PQKBTitleCode)TC0000516759 035 $a(PQKBWorkID)10478336 035 $a(PQKB)10468534 035 $a(MiAaPQ)EBC800958 035 $a(Au-PeEL)EBL800958 035 $a(CaPaEBR)ebr10511335 035 $a(CaONFJC)MIL692619 035 $a(OCoLC)1441737298 035 $a(FINmELB)ELB159370 035 $a(EXLCZ)992550000000064839 100 $a20180331d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFourier series in several variables with applications to partial differential equations /$fVictor L. Shapiro 205 $a1st ed. 210 $aBoca Raton, Fla. $cCRC Press$dc2011 210 1$aBoca Raton, Fla. :$cCRC Press,$d2011. 215 $a1 online resource (351 p.) 225 1 $aChapman & Hall/CRC applied mathematics and nonlinear science series 300 $aA Chapman & Hall book. 311 $a1-322-61337-0 311 $a1-4398-5427-0 320 $aIncludes bibliographical references (p. 331-334). 327 $aFront Cover; Dedication; Contents; Preface; Chapter 1: Summability of Multiple Fourier Series; Chapter 2: Conjugate Multiple Fourier Series; Chapter 3: Uniqueness of Multiple Trigonometric Series; Chapter 4: Positive Definite Functions; Chapter 5: Nonlinear Partial Differential Equations; Chapter 6: The Stationary Navier-Stokes Equations; Appendix A: Integrals and Identities; Appendix B: Real Analysis; Appendix C: Harmonic and Subharmonic Functions; Bibliography 330 $aFourier Series in Several Variables with Applications to Partial Differential Equations illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear elliptic PDEs and resonance theory. He also establishes the connection between multiple Fourier series and number theory. The book first presents four summability methods used in studying multiple Fourier series: iterated Fejer, Bochner-Riesz, Abel, a 410 0$aChapman & Hall/CRC applied mathematics and nonlinear science series. 606 $aFourier series 606 $aFunctions of several real variables 606 $aDifferential equations, Partial 615 0$aFourier series. 615 0$aFunctions of several real variables. 615 0$aDifferential equations, Partial. 676 $a515/.2433 700 $aShapiro$b Victor L$g(Victor Lenard),$f1924,$01698235 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827455603321 996 $aFourier series in several variables with applications to partial differential equations$94079550 997 $aUNINA