LEADER 01460nam0-2200433---450- 001 990001613660203316 005 20090715150646.0 010 $a88-387-3188-8 035 $a000161366 035 $aUSA01000161366 035 $a(ALEPH)000161366USA01 035 $a000161366 100 $a20040428d2005----km-y0enga50------ba 101 1 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> responsabilitą del professionista tecnico$eingegnere, architetto, geometra$fGiuseppe Musolino 205 $a5. ed 210 $aSantarcangelo di Romagna$cMaggioli$d2005 215 $a262 p.$d24 cm 225 2 $aAppalti & lavori pubblici$v2 410 1$aAppalti & lavori pubblici$12001$v2 606 0 $aGeometri$aResponsabilitą professionale 606 0 $aArchitetti$aResponsabilitą professionale 606 0 $aIngegneri$aResponsabilitą professionale 676 $a346.45031 700 1$aMUSOLINO,$bGiuseppe$0235547 801 0$aIT$bsalbc$gISBD 912 $a990001613660203316 951 $aXXV.1.K 117 (IG I 2304 A)$b47902 G.$cXXV.1.K 117 (IG I 2304)$d00118189 959 $aBK 969 $aGIU 979 $aMARIA$b10$c20040428$lUSA01$h1332 979 $aMARIASEN$b90$c20051025$lUSA01$h0951 979 $aMARIASEN$b90$c20051025$lUSA01$h0957 979 $aRSIAV1$b90$c20090715$lUSA01$h1506 979 $aFIORELLA$b90$c20120221$lUSA01$h1049 996 $aResponsabilitą del professionista tecnico$9944677 997 $aUNISA LEADER 02364nam 2200565 450 001 9910827447903321 005 20220901070447.0 010 $a0-8218-7593-0 035 $a(CKB)3240000000069532 035 $a(EBL)3113065 035 $a(SSID)ssj0000629277 035 $a(PQKBManifestationID)11380077 035 $a(PQKBTitleCode)TC0000629277 035 $a(PQKBWorkID)10731109 035 $a(PQKB)11605335 035 $a(MiAaPQ)EBC3113065 035 $a(RPAM)2315897 035 $a(PPN)197103251 035 $a(EXLCZ)993240000000069532 100 $a19811211h19821982 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aComplex contour integral representation of cardinal spline functions /$fWalter Schempp 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1982] 210 4$d©1982 215 $a1 online resource (125 p.) 225 1 $aContemporary mathematics,$x0271-4132 ;$v7$x0271-4132 300 $aDescription based upon print version of record. 311 $a0-8218-5006-7 320 $aIncludes bibliographical references and index. 327 $aContents -- Foreword -- Preface -- Acknowledgements -- 1. Cardinal Spline Functions -- 2. A Complex Contour Integral Representation of Basis Spline Functions (Compact Paths) -- 3. The Case of Equidistant Knots -- 4. Cardinal Exponential Spline Functions and Interpolants -- 5. Inversion of Laplace Transform -- 6. A Complex Contour Integral Representation of Cardinal Exponential Spline Functions (Non-Compact Paths) -- 7. A Complex Contour Integral Representation of Euler-Frobenius Polynomials (Non-Compact Paths) -- References -- Subject Index -- Author Index. 410 0$aContemporary mathematics (American Mathematical Society).$v7$x0271-4132 606 $aSpline theory 606 $aIntegral transforms 606 $aIntegral representations 615 0$aSpline theory. 615 0$aIntegral transforms. 615 0$aIntegral representations. 676 $a511/.42 700 $aSchempp$b W$g(Walter),$f1938-$048127 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827447903321 996 $aComplex contour integral representation of cardinal spline functions$9384324 997 $aUNINA