LEADER 02895nam 2200565 450 001 9910827438103321 005 20220817013627.0 010 $a1-4704-0857-0 035 $a(CKB)3360000000464618 035 $a(EBL)3113858 035 $a(SSID)ssj0000973218 035 $a(PQKBManifestationID)11539951 035 $a(PQKBTitleCode)TC0000973218 035 $a(PQKBWorkID)10960089 035 $a(PQKB)11340281 035 $a(MiAaPQ)EBC3113858 035 $a(RPAM)4832417 035 $a(PPN)195413172 035 $a(EXLCZ)993360000000464618 100 $a20140904h19901990 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHomotopy formulas in the tangential Cauchy-Riemann complex /$fFranc?ois Treves 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1990. 210 4$dİ1990 215 $a1 online resource (133 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 87, Number 434 300 $a"September 1990, volume 87, number 434 (second of 3 numbers)." 311 $a0-8218-2496-1 320 $aIncludes bibliographical references. 327 $aCONTENTS -- INTRODUCTION -- CHAPTER I: HOMOTOPY FORMULAS WITH EXPONENTIAL IN THE CAUCHY-RIEMANN COMPLEX -- I.1 The Cauchy-Riemann complex in C[sup(n)]. Notation -- I.2 Bochner-Martinelli formula with exponential -- I.3 Koppelman formulas with exponential -- I.4 Vanishing of the error terms -- CHAPTER II: HOMOTOPY FORMULAS IN THE TANGENTIAL CAUCHY-RIEMANN COMPLEX -- II.1 Local description of the tangential Cauchy-Riemann complex -- II.2 Application of the Bochner-Martinelli formula to a CR manifold -- II.3 Homotopy formulas for differential forms that vanish on the s-part of the boundary -- II.4 The pinching transformation -- II.5 Reduction to differential forms that vanish on the s-part of the boundary -- II.6 Convergence of the homotopy operators -- II.7 Exact homotopy formulas -- CHAPTER III: GEOMETRIC CONDITIONS -- III.1 In variance of the central hypothesis in the hypersurface case -- III.2 The hypersurface case: Supporting manifolds -- III.3 Local homotopy formulas on a hypersurface -- III.4 Local homotopy formulas in higher codimension -- REFERENCES. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 87, Number 434. 606 $aCauchy-Riemann equations 606 $aHomotopy theory 606 $aDifferential forms 615 0$aCauchy-Riemann equations. 615 0$aHomotopy theory. 615 0$aDifferential forms. 676 $a515/.353 700 $aTreves$b Francois$f1930-$0424171 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827438103321 996 $aHomotopy formulas in the tangential Cauchy-Riemann complex$94113825 997 $aUNINA