LEADER 05396nam 22006972 450 001 9910827362103321 005 20160224031220.0 010 $a1-139-88578-2 010 $a1-283-00603-0 010 $a9786613006035 010 $a0-511-85911-2 010 $a0-511-86085-4 010 $a0-511-85824-8 010 $a0-511-92141-1 010 $a0-511-85998-8 010 $a0-511-85737-3 035 $a(CKB)2550000000031337 035 $a(EBL)615760 035 $a(OCoLC)703137550 035 $a(SSID)ssj0000469063 035 $a(PQKBManifestationID)11324943 035 $a(PQKBTitleCode)TC0000469063 035 $a(PQKBWorkID)10510738 035 $a(PQKB)10059243 035 $a(UkCbUP)CR9780511921414 035 $a(Au-PeEL)EBL615760 035 $a(CaPaEBR)ebr10449532 035 $a(CaONFJC)MIL300603 035 $a(MiAaPQ)EBC615760 035 $a(PPN)261340425 035 $a(EXLCZ)992550000000031337 100 $a20100927d2011|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFactor Separation in the Atmosphere $eApplications and Future Prospects /$fedited by Pinhas Alpert and Tatiana Sholokhman, Tel Aviv University, Israel$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2011. 215 $a1 online resource (xviii, 274 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 24 Feb 2016). 311 $a0-521-19173-4 320 $aIncludes bibliographical references and index. 327 $g1.$tIntroduction /$rP. Alpert --$g2.$tThe Factor Separation Methodology and the fractional approach /$rT. Sholokhman and P. Alpert --$g3.$tInvestigation of the Factor Separation features for basic mathematical functions /$rT. Sholokhman and P. Alpert --$g4.$tFactor Separation Methodology and paleoclimates /$rA. Berger, M. Claussen and Q. Yin --$g5. Meso-meteorology: Factor Separation examples in atmospheric meso-scale motions /$rP. Alpert --$g6.$tUsing the Alpert-Stein Factor Separation Methodology for land-use land-cover change impacts on weather and climate process with the Regional Atmospheric Modeling System /$rA. Beltra?n-Przekurat, R.A. Piekle Sr., J.L. Eastman, G.T. Narisma, A.J. Pitman, M. Lei, and D. Niyogi --$g7.$tApplication of Factor Separation to heavy rainfall and cyclogenesis: Mediterranean examples /$rR. Romero --$g8.$tExperience in applying the Alpert-Stein Factor Separation Methodology to assessing urban land-use and aerosol impacts on precipitation /$rS.C. van den Heever, C. Rozoff, and W.R. Cotton --$g9.$tFree and forced thermocline oscillations in Lake Tanganyika /$rO. Gourgue, E. Deleersnijder, V. Legat, E. Marchal, and L. White --$g10.$tApplication of the Factor Separation Methodology to quantify the effect of waste heat, vapor and pollution on cumulus convection /$rG.W. Reuter --$g11.$tThe use of the Alpert-Stein Factor Separation Methodology for climate variable interaction studies in hydrological land surface models and crop yield models /$rD. Niyogi, R. Mera, Yongkang Xue, G. Wilkerson, and F. Booker --$g12.$tLinear model for the sea breeze /$rT. Sholokhman and P. Alpert --$g13.$tExperience and conclusions from the Alpert-Stein Factor Separation Methodology: Ensemble data assimilation and forecasting applications /$rD. Rostkier-Edelstein and J.P. Hacker --$g14.$tTagging systematic errors arising from different components of dynamics and physics in forecast models /$rT. N. Krishnamurti and Vinay Kumar --$g15.$tSome difficulties and prospects /$rP. Alpert and T. Sholokhman --$g16.$tSummary /$rP. Alpert --$tAppendix: References employing the Alpert-Stein Factor Separation Methodology. 330 $aModeling atmospheric processes in order to forecast the weather or future climate change is an extremely complex and computationally intensive undertaking. One of the main difficulties is that there are a huge number of factors that need to be taken into account, some of which are still poorly understood. The Factor Separation (FS) method is a computational procedure that helps deal with these nonlinear factors. In recent years many scientists have applied FS methodology to a range of modeling problems, including paleoclimatology, limnology, regional climate change, rainfall analysis, cloud modeling, pollution, crop growth, and other forecasting applications. This book is the first to describe the fundamentals of the method, and to bring together its many applications in the atmospheric sciences. The main audience is researchers and graduate students using the FS method, but it is also of interest to advanced students, researchers, and professionals across the atmospheric sciences. 606 $aAtmospheric diffusion$xMathematical models 606 $aMeteorology$xMathematical methods 606 $aFactorization (Mathematics) 615 0$aAtmospheric diffusion$xMathematical models. 615 0$aMeteorology$xMathematical methods. 615 0$aFactorization (Mathematics) 676 $a551.5 686 $aSCI042000$2bisacsh 702 $aAlpert$b Pinhas 702 $aSholokhman$b Tatiana 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910827362103321 996 $aFactor Separation in the Atmosphere$94094535 997 $aUNINA