LEADER 11247nam 2200529 450 001 9910827333203321 005 20230612075829.0 010 $a1-119-72522-4 010 $a1-119-72523-2 010 $a1-119-72526-7 035 $a(CKB)4100000011945735 035 $a(MiAaPQ)EBC6629941 035 $a(Au-PeEL)EBL6629941 035 $a(OCoLC)1255218943 035 $a(EXLCZ)994100000011945735 100 $a20220127d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aApplied water science$hVolume 1$iFundamentals and applications /$fedited by Inamuddin, Mohd Imran Ahamed, Rajender Boddula, and Tauseef Ahmad Rangreez 210 1$aHoboken, New Jersey :$cWiley-Scrivener,$d[2021] 210 4$dİ2021 215 $a1 online resource (560 pages) 311 $a1-119-72476-7 320 $aIncludes bibliographical references and index. 327 $aCover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Sorbent-Based Microextraction Techniques for the Analysis of Phthalic Acid Esters in Water Samples -- 1.1 Introduction -- 1.2 Solid-Phase Microextraction -- 1.3 Stir Bar Sorptive Extraction -- 1.4 Solid-Phase Extraction -- 1.5 Others Minor Sorbent-Based Microextraction Techniques -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives -- 2.1 Introduction -- 2.2 Occurrence and Behaviour of Pharmaceutics in Aquatic Systems -- 2.2.1 Nature and Sources -- 2.2.2 Dissemination and Occurrence in Aquatic Systems -- 2.2.3 Behaviour in Aquatic Systems -- 2.3 Human Health Risks and Their Mitigation -- 2.3.1 Human Exposure Pathways -- 2.3.2 Potential Human Health Risks -- 2.3.3 Human Health Risks: A Developing World Perspective -- 2.3.4 Removal of Pharmaceuticals -- 2.3.4.1 Conventional Removal Methods -- 2.3.4.2 Advanced Removal Methods -- 2.3.4.3 Hybrid Removal Processes -- 2.4 Knowledge Gaps and Future Research Directions -- 2.4.1 Increasing Africa's Research Footprint -- 2.4.2 Hotspot Sources and Reservoirs -- 2.4.3 Behaviour and Fate in Aquatic Systems -- 2.4.4 Ecotoxicology of Pharmaceuticals and Metabolites -- 2.4.5 Human Exposure Pathways -- 2.4.6 Human Toxicology and Epidemiology -- 2.4.7 Removal Capacity of Low-Cost Water Treatment Processes -- 2.5 Summary, Conclusions, and Outlook -- Author Contributions -- References -- 3 Oil-Water Separations -- 3.1 Introduction -- 3.2 Sources and Composition -- 3.3 Common Oil-Water Separation Techniques -- 3.4 Oil-Water Separation Technologies -- 3.4.1 Advancement in the Technology of Membrane -- 3.4.1.1 Polymer-Based Membranes -- 3.4.1.2 Ceramic-Based Membranes. 327 $a3.5 Separation of Oil/Water Utilizing Meshes -- 3.5.1 Mechanism Involved -- 3.5.2 Meshes Functionalization -- 3.5.2.1 Inorganic Materials -- 3.5.2.2 Organic Materials -- 3.6 Separation of Oil-Water Mixture Using Bioinspired Surfaces -- 3.6.1 Nature's Lesson -- 3.6.2 Superhydrophilic/Phobic and Superoleophilic/Phobic Porous Surfaces -- 3.7 Conclusion -- Acknowledgment -- References -- 4 Microplastics Pollution -- 4.1 Introduction and General Considerations -- 4.2 Key Scientific Issues Concerning Water and Microplastics Pollution -- 4.3 Marine Microplastics: From the Anthropogenic Litter to the Plastisphere -- 4.4 Social and Human Perspectives: From Sustainable Development to Civil Science -- 4.5 Conclusions and Future Projections -- References -- 5 Chloramines Formation, Toxicity, and Monitoring Methods in Aqueous Environments -- 5.1 Introduction -- 5.2 Inorganic Chloramines Formation and Toxicity -- 5.3 Analytical Methods for Inorganic Chloramines -- 5.3.1 Colorimetric and Batch Methods -- 5.3.2 Chromatographic Methods -- 5.3.3 Membrane Inlet Mass Spectrometry -- 5.4 Organic Chloramines Formation and Toxicity -- 5.5 Analytical Methods for Organic Chloramines -- 5.6 Conclusions -- References -- 6 Clay-Based Adsorbents for the Analysis of Dye Pollutants -- 6.1 Introduction -- 6.1.1 Biological Method -- 6.1.2 Physical Method -- 6.1.3 Why Only Clays? -- 6.1.4 Clay-Based Adsorbents -- 6.1.4.1 Kaolinite -- 6.1.4.2 Rectorite -- 6.1.4.3 Halloysite -- 6.1.4.4 Montmorillonite -- 6.1.4.5 Sepiolite -- 6.1.4.6 Laponite -- 6.1.4.7 Bentonite -- 6.1.4.8 Zeolites -- 6.2 Membrane Filtration -- 6.3 Chemical Treatment -- 6.3.1 Fenton and Photo-Fenton Process -- 6.3.2 Mechanism Using Acid and Base Catalyst -- 6.4 Photo-Catalytic Oxidation -- 6.5 Conclusions -- Acknowledgments -- References -- 7 Biochar-Supported Materials for Wastewater Treatment -- 7.1 Introduction. 327 $a7.2 Generalities of Biochar: Structure, Production, and Properties -- 7.2.1 Biochar Structure -- 7.2.2 Biochar Production -- 7.2.2.1 Pyrolysis -- 7.2.2.2 Gasification -- 7.2.2.3 Hydrothermal Carbonization -- 7.2.3 Biochar Properties -- 7.2.3.1 Porosity -- 7.2.3.2 Surface Area -- 7.2.3.3 Surface Functional Groups -- 7.2.3.4 Cation Exchange Capacity -- 7.2.3.5 Aromaticity -- 7.3 Biochar-Supported Materials -- 7.3.1 Magnetic Biochar Composites -- 7.3.2 Nano-Metal Oxide/Hydroxide-Biochar Composites -- 7.3.3 Functional Nanoparticles-Coated Biochar Composites -- 7.4 Conclusion -- References -- 8 Biological Swine Wastewater Treatment -- 8.1 Introduction -- 8.2 Swine Wastewater Characteristics -- 8.3 Microorganisms of Biological Swine Wastewater Treatment -- 8.4 Classification of Biological Swine Wastewater Treatment -- 8.5 Biological Processes For Swine Wastewater Treatment -- 8.5.1 Suspended Growth Processes -- 8.5.1.1 Activated Sludge Process -- 8.5.1.2 Sequential Batch Reactor -- 8.5.1.3 Sequencing Batch Membrane Bioreactor -- 8.5.1.4 Anaerobic Contact Process -- 8.5.1.5 Anaerobic Digestion -- 8.5.2 Attached Growth Processes -- 8.5.2.1 Rotating Biological Contactor -- 8.5.2.2 Upflow Anaerobic Sludge Blanket -- 8.5.2.3 Anaerobic Filter -- 8.5.2.4 Hybrid Anaerobic Reactor -- 8.6 Challenges and Future Prospects in Swine Wastewater Treatment -- References -- 9 Determination of Heavy Metal Ions From Water -- 9.1 Introduction -- 9.2 Detection of Heavy Metal Ions -- 9.2.1 Atomic Absorption Spectroscopy -- 9.2.2 Nanomaterials -- 9.2.3 High-Resolution Surface Plasmon Resonance Spectroscopy with Anodic Stripping Voltammetry -- 9.2.4 Biosensors -- 9.2.4.1 Enzyme-Based Biosensors -- 9.2.4.2 Electrochemical Sensors -- 9.2.4.3 Polymer-Based Biosensors -- 9.2.4.4 Bacterial-Based Sensors -- 9.2.4.5 Protein-Based Sensors -- 9.2.5 Attenuated Total Reflectance. 327 $a9.2.6 High-Resolution Differential Surface Plasmon Resonance Sensor -- 9.2.7 Hydrogels -- 9.2.8 Chelating Agents -- 9.2.9 Ionic Liquids -- 9.2.10 Polymers -- 9.2.10.1 Dendrimers -- 9.2.11 Macrocylic Compounds -- 9.2.12 Inductively Coupled Plasma Mass Spectrometry -- 9.3 Conclusions -- References -- 10 The Production and Role of Hydrogen-Rich Water in Medical Applications -- 10.1 Introduction -- 10.2 Functional Water -- 10.3 Reduced Water -- 10.4 Production of Hydrogen-Rich Water -- 10.5 Mechanism of Hydrogen Molecules During Reactive Oxygen Species Scavenging -- 10.6 Hydrogen-Rich Water Effects on the Human Body -- 10.6.1 Anti-Inflammatory Effects -- 10.6.2 Anti-Radiation Effects -- 10.6.3 Wound Healing Effects -- 10.6.4 Anti-Diabetic Effects -- 10.6.5 Anti-Neurodegenerative Effects -- 10.6.6 Anti-Cancer Effects -- 10.6.7 Anti-Arteriosclerosis Effects -- 10.7 Other Effects of Hydrogenated Water -- 10.7.1 Effect of Hydrogen-Rich Water in Hemodialysis -- 10.7.2 Effect on Anti-Cancer Drug Side Effects -- 10.8 Applications of Hydrogen-Rich Water -- 10.8.1 In Health Care -- 10.8.2 In Sports Science -- 10.8.3 In Therapeutic Applications and Delayed Progression of Diseases -- 10.9 Safety of Using Hydrogen-Rich Water -- 10.10 Concluding Remarks -- References -- 11 Hydrosulphide Treatment -- 11.1 Introduction -- 11.1.1 Agriculture -- 11.1.2 Medical -- 11.1.3 Industrial -- 11.2 Conclusions -- References -- 12 Radionuclides: Availability, Effect, and Removal Techniques -- 12.1 Introduction -- 12.1.1 Available Radionuclides in the Environment -- 12.1.1.1 Uranium -- 12.1.1.2 Thorium (Z = 90) -- 12.1.1.3 Radium (Z = 88) -- 12.1.1.4 Radon (Z = 86) -- 12.1.1.5 Polonium and Lead -- 12.1.2 Presence of Radionuclide in Drinking Water -- 12.1.2.1 Health Impacts of Radionuclides -- 12.1.2.2 Health Issues Caused Due to Uranium -- 12.1.2.3 Health Issues Caused Due to Radium. 327 $a12.1.2.4 Health Issues Caused Due to Radon -- 12.1.2.5 Health Issues Caused Due to Lead and Polonium -- 12.2 Existing Techniques and Materials Involved in Removal of Radionuclide -- 12.2.1 Ion Exchange -- 12.2.2 Reverse Osmosis -- 12.2.3 Aeration -- 12.2.4 Granulated Activated Carbon -- 12.2.5 Filtration -- 12.2.6 Lime Softening, Coagulation, and Co-Precipitation -- 12.2.7 Flocculation -- 12.2.8 Nanofilteration -- 12.2.9 Greensand Filteration -- 12.2.10 Nanomaterials -- 12.2.10.1 Radionuclides Sequestration by MOFs -- 12.2.10.2 Radionuclides Removal by COFs -- 12.2.10.3 Elimination of Radionuclides by GOs -- 12.2.10.4 Radionuclide Sequestration by CNTs -- 12.2.11 Ionic Liquids -- 12.3 Summary of Various Nanomaterial and Efficiency of Water Treating Technology -- 12.4 Management of Radioactive Waste -- 12.5 Conclusion -- References -- 13 Applications of Membrane Contactors for Water Treatment -- 13.1 Introduction -- 13.2 Characteristics of Membrane Contactors -- 13.3 Membrane Module Configurations -- 13.4 Mathematical Aspects of Membrane Contactors -- 13.5 Advantages and Limitations of Membrane Contactors -- 13.5.1 Advantages -- 13.5.1.1 High Interfacial Contact -- 13.5.1.2 Absence of Flooding and Loading -- 13.5.1.3 Minimization of Back Mixing and Emulsification -- 13.5.1.4 Freedom for Solvent Selection -- 13.5.1.5 Reduction in Solvent Inventory -- 13.5.1.6 Modularity -- 13.5.2 Limitations -- 13.6 Membrane Contactors as Alternatives to Conventional Unit Operations -- 13.6.1 Liquid-Liquid Extraction -- 13.6.2 Membrane Distillation -- 13.6.3 Osmotic Distillation -- 13.6.4 Membrane Crystallization -- 13.6.5 Membrane Emulsification -- 13.6.6 Supported Liquid Membranes -- 13.6.7 Membrane Bioreactors -- 13.7 Applications -- 13.7.1 Wastewater Treatment -- 13.7.2 Metal Recovery From Aqueous Streams -- 13.7.3 Desalination. 327 $a13.7.4 Concentration of Products in Food and Biotechnological Industries. 330 $a""Blue is the new green." Water has, over the last decade, quickly become one of the hottest and most important topics in the scientific world. It is important that books like this one keep engineers and scientists working in water management and other applied water sciences up to date on all of the latest trends and to offer a basic overview for new hires in the field"--$cProvided by publisher. 606 $aWater-supply 606 $aWater$xPurification 615 0$aWater-supply. 615 0$aWater$xPurification. 676 $a333.91 702 $aAhamed$b Mohd Imran 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827333203321 996 $aApplied water science$92141178 997 $aUNINA