LEADER 03838nam 2200745 a 450 001 9910827271403321 005 20240516150818.0 010 $a1-283-85759-6 010 $a3-11-025037-3 024 7 $a10.1515/9783110250374 035 $a(CKB)2670000000211135 035 $a(EBL)894025 035 $a(OCoLC)796384303 035 $a(SSID)ssj0000678535 035 $a(PQKBManifestationID)11404889 035 $a(PQKBTitleCode)TC0000678535 035 $a(PQKBWorkID)10728876 035 $a(PQKB)10686025 035 $a(MiAaPQ)EBC894025 035 $a(DE-B1597)123209 035 $a(OCoLC)840445363 035 $a(DE-B1597)9783110250374 035 $a(Au-PeEL)EBL894025 035 $a(CaPaEBR)ebr10582195 035 $a(CaONFJC)MIL417009 035 $a(EXLCZ)992670000000211135 100 $a20120320d2012 uy 0 101 0 $aeng 135 $aurun#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aNumerical methods for eigenvalue problems /$fby Steffen Bo?rm, Christian Mehl 205 $a1st ed. 210 $aBerlin ;$aBoston $cDe Gruyter$dc2012 215 $a1 online resource (216 p.) 225 1 $aDe Gruyter graduate lectures 300 $aDescription based upon print version of record. 311 0 $a3-11-025033-0 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tPreface --$tContents --$tChapter 1. Introduction --$tChapter 2. Existence and properties of eigenvalues and eigenvectors --$tChapter 3. Jacobi iteration --$tChapter 4. Power methods --$tChapter 5. QR iteration --$tChapter 6. Bisection methods --$tChapter 7. Krylov subspace methods for large sparse eigenvalue problems --$tChapter 8. Generalized and polynomial eigenvalue problems --$tBibliography --$tIndex 330 $aEigenvalues and eigenvectors of matrices and linear operators play an important role when solving problems from structural mechanics and electrodynamics, e.g., by describing the resonance frequencies of systems, when investigating the long-term behavior of stochastic processes, e.g., by describing invariant probability measures, and as a tool for solving more general mathematical problems, e.g., by diagonalizing ordinary differential equations or systems from control theory. This textbook presents a number of the most important numerical methods for finding eigenvalues and eigenvectors of matrices. The authors discuss the central ideas underlying the different algorithms and introduce the theoretical concepts required to analyze their behavior with the goal to present an easily accessible introduction to the field, including rigorous proofs of all important results, but not a complete overview of the vast body of research. Several programming examples allow the reader to experience the behavior of the different algorithms first-hand. The book addresses students and lecturers of mathematics, physics and engineering who are interested in the fundamental ideas of modern numerical methods and want to learn how to apply and extend these ideas to solve new problems. 410 0$aDe Gruyter graduate. 606 $aEigenvalues 606 $aEigenvectors 606 $aMatrices$xData processing 610 $aBisection Method. 610 $aEigenvalue Problem. 610 $aJacobi Iteration. 610 $aQR Iteration. 610 $aVector Iteration. 615 0$aEigenvalues. 615 0$aEigenvectors. 615 0$aMatrices$xData processing. 676 $a512.9/436 686 $aSK 910$2rvk 700 $aBo?rm$b Steffen$01055976 701 $aMehl$b Christian$f1968-$01638542 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827271403321 996 $aNumerical methods for eigenvalue problems$93981049 997 $aUNINA