LEADER 05666nam 2200733 a 450 001 9910827088103321 005 20240313214332.0 010 $a9781118733981 010 $a1118733983 010 $a9781118733691 010 $a111873369X 010 $a9781118733905 010 $a1118733908 035 $a(CKB)2670000000369870 035 $a(EBL)1187184 035 $a(OCoLC)843331623 035 $a(SSID)ssj0000904919 035 $a(PQKBManifestationID)11494817 035 $a(PQKBTitleCode)TC0000904919 035 $a(PQKBWorkID)10926277 035 $a(PQKB)10134411 035 $a(MiAaPQ)EBC1187184 035 $a(Au-PeEL)EBL1187184 035 $a(CaPaEBR)ebr10700399 035 $a(CaONFJC)MIL491919 035 $a(Perlego)1000910 035 $a(EXLCZ)992670000000369870 100 $a20130123d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aVaR methodology for non-gaussian finance /$fMarine Habart-Corlosquet, Jacques Janssen, Raimondo Manca 205 $a1st ed. 210 $aHoboken, N.J. $cISTE Ltd./John Wiley and Sons Inc.$d2013 215 $a1 online resource (177 p.) 225 0 $aFocus series in finance, business and management,$x2051-2481 300 $aDescription based upon print version of record. 311 08$a9781848214644 311 08$a1848214642 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; INTRODUCTION; CHAPTER 1. USE OF VALUE-AT-RISK (VAR) TECHNIQUES FOR SOLVENCY II, BASEL II AND III; 1.1. Basic notions of VaR; 1.1.1. Definition; 1.1.2. Calculation methods; 1.1.3. Advantages and limits; 1.2. The use of VaR for insurance companies; 1.2.1. Regulatory approach; 1.2.2. Risk profile approach; 1.3. The use of VaR for banks; 1.3.1. Basel II; 1.3.2. Basel III; 1.4. Conclusion; CHAPTER 2. CLASSICAL VALUE-AT-RISK (VAR) METHODS; 2.1. Introduction; 2.2. Risk measures; 2.3. General form of the VaR; 2.4. VaR extensions: tail VaR and conditional VaR 327 $a2.5. VaR of an asset portfolio 2.5.1. VaR methodology; 2.6. A simulation example: the rates of investment of assets; CHAPTER 3. VAR EXTENSIONS FROM GAUSSIAN FINANCE TO NON-GAUSSIAN FINANCE; 3.1. Motivation; 3.2. The normal power approximation; 3.3. VaR computation with extreme values; 3.3.1. Extreme value theory; 3.3.2. VaR values; 3.3.3. Comparison of methods; 3.3.4. VaR values in extreme theory; 3.4. VaR value for a risk with Pareto distribution; 3.4.1. Forms of the Pareto distribution; 3.4.2. Explicit forms VaR and CVaR in Pareto case; 3.4.3. Example of computation by simulation 327 $a3.5. Conclusion CHAPTER 4. NEW VAR METHODS OF NON-GAUSSIAN FINANCE; 4.1. Le?vy processes; 4.1.1. Motivation; 4.1.2. Notion of characteristic functions; 4.1.3. Le?vy processes; 4.1.4. Le?vy-Khintchine formula; 4.1.5. Examples of Le?vy processes; 4.1.6. Variance gamma (VG) process; 4.1.7. Risk neutral measures for Le?vy models in finance; 4.1.8. Particular Le?vy processes: Poisson-Brownian model with jumps; 4.1.9. Particular Le?vy processes: Merton model with jumps; 4.1.10. VaR techniques for Le?vy processes; 4.2. Copula models and VaR techniques; 4.2.1. Introduction; 4.2.2. Sklar theorem (1959) 327 $a4.2.3. Particular case and Fre?chet bounds 4.2.4. Examples of copula; 4.2.5. The normal copula; 4.2.6. Estimation of copula; 4.2.7. Dependence; 4.2.8. VaR with copula; 4.3. VaR for insurance; 4.3.1. VaR and SCR; 4.3.2. Particular cases; CHAPTER 5. NON-GAUSSIAN FINANCE: SEMI-MARKOV MODELS; 5.1. Introduction; 5.2. Homogeneous semi-Markov process; 5.2.1. Basic definitions; 5.2.2. Basic properties [JAN 09]; 5.2.3. Particular cases of MRP; 5.2.4. Asymptotic behavior of SMP; 5.2.5. Non-homogeneous semi-Markov process; 5.2.6. Discrete-time homogeneous and non-homogeneous semi-Markov processes 327 $a5.2.7. Semi-Markov backward processes in discrete time 5.2.8. Semi-Markov backward processes in discrete time; 5.3. Semi-Markov option model; 5.3.1. General model; 5.3.2. Semi-Markov Black-Scholes model; 5.3.3. Numerical application for the semi-Markov Black-Scholes model; 5.4. Semi-Markov VaR models; 5.4.1. The environment semi-Markov VaR (ESMVaR) model; 5.4.2. Numerical applications for the semi-MarkovVaR model; 5.4.3. Semi-Markov extension of the Merton's model; 5.5. The Semi-Markov Monte Carlo Model in a homogeneous environment; 5.5.1. Capital at Risk; 5.5.2. A credit risk example 327 $aCONCLUSION 330 $aWith the impact of the recent financial crises, more attention must be given to new models in finance rejecting "Black-Scholes-Samuelson" assumptions leading to what is called non-Gaussian finance. With the growing importance of Solvency II, Basel II and III regulatory rules for insurance companies and banks, value at risk (VaR) - one of the most popular risk indicator techniques plays a fundamental role in defining appropriate levels of equities. The aim of this book is to show how new VaR techniques can be built more appropriately for a crisis situation.VaR methodology for non-Gauss 410 0$aFocus series (London, England) 606 $aFinancial risk management 615 0$aFinancial risk management. 676 $a332.0151 700 $aHabart-Corlosquet$b Marine$01654500 701 $aJanssen$b Jacques$0726990 701 $aManca$b Raimondo$0327298 712 02$aJohn Wiley & Sons. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827088103321 996 $aVaR methodology for non-gaussian finance$94006370 997 $aUNINA