LEADER 05535nam 2200673 a 450 001 9910452778103321 005 20200520144314.0 010 $a0-12-394614-X 035 $a(CKB)2550000001105863 035 $a(EBL)1313393 035 $a(OCoLC)853240495 035 $a(SSID)ssj0000968792 035 $a(PQKBManifestationID)11527501 035 $a(PQKBTitleCode)TC0000968792 035 $a(PQKBWorkID)10984966 035 $a(PQKB)10678704 035 $a(MiAaPQ)EBC1313393 035 $a(Au-PeEL)EBL1313393 035 $a(CaPaEBR)ebr10733194 035 $a(CaONFJC)MIL504617 035 $a(PPN)176637893 035 $a(EXLCZ)992550000001105863 100 $a20130730d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aInformatics for materials science and engineering$b[electronic resource] $edata-driven discovery for accelerated experimentation and application /$fedited by Krishna Rajan 205 $a1st ed. 210 $aOxford $cButterworth-Heinemann$d2013 215 $a1 online resource (542 p.) 300 $aDescription based upon print version of record. 311 $a0-12-394399-X 311 $a1-299-73366-2 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Informatics for Materials Science and Engineering; Copyright Page; Contents; Preface: A Reading Guide; Acknowledgment; 1. Materials Informatics: An Introduction; 1. The What and Why of Informatics; 2. Learning from Systems Biology: An "Omics" Approach to Mater; 3. Where Do We Get the Information?; 4. Data Mining: Data-Driven Materials Research; References; 2. Data Mining in Materials Science and Engineering; 1. Introduction; 2. Analysis Needs of Science Applications; 3. The Scientific Data-Mining Process; 4. Image Analysis; 5. Dimension Reduction; 5.1 Feature Selection Techniques 327 $aDistance Filter Chi-Squared Filter; Stump Filter; Relief; 5.2 Feature Transformation Techniques; Principal Component Analysis (PCA); Isomap; Locally Linear Embedding (LLE); Laplacian Eigenmaps; 5.3 Comparison of Dimension Reduction Methods; 6. Building Predictive and Descriptive Models; 6.1 Classification and Regression; 6.2 Clustering; 7. Further Reading; Acknowledgments; References; 3. Novel Approaches to Statistical Learning in Materials Science; 1. Introduction; 2. The Supervised Binary Classification Learning Problem; 3. Incorporating Side Information; 4. Conformal Prediction 327 $a5. Optimal Learning 6. Optimal Uncertainty Quantification; 7. Clustering Including Statistical Physics Approaches; 8. Materials Science Example: The Search for New Piezoelectrics; 9. Conclusion; 10. Further Reading; Acknowledgments; References; 4. Cluster Analysis: Finding Groups in Data; 1. Introduction; 2. Unsupervised Learning; 2.1 Principal Components Analysis; 2.2 Clustering; 3. Different Clustering Algorithms and their Implementations in R; 3.1 Agglomerative Hierarchical; 3.2 K-Means; 3.3 Divisive Hierarchical; 3.4 Partitioning Around Medoids (PAM); 3.5 Fuzzy Analysis (FANNY) 327 $a4. Validations of Clustering Results 4.1 Dunn Index; 4.2 Silhouette Width; 4.3 Connectivity; 5. Rank Aggregation of Clustering Results; 6. Further Reading; Acknowledgments; References; 5. Evolutionary Data-Driven Modeling; 1. Preamble; 2. The Concept of Pareto Tradeoff; 3. Evolutionary Neural Net and Pareto Tradeoff; 4. Selecting the Appropriate Model in EvoNN; 5. Conventional Genetic Programming; 6. Bi-Objective Genetic Programming; 6.1 BioGP Code; 7. Analyzing the Variable Response in EvoNN and BioGP; 8. An Application in the Materials Area; 9. Further Reading; References 327 $a6. Data Dimensionality Reduction in Materials Science 1. Introduction; 2. Dimensionality Reduction: Basic Ideas and Taxonomy; 3. Dimensionality Reduction Methods: Algorithms, Advantages, and Disadvantages; 3.1 Principal Component Analysis (PCA); PCA Algorithm; 3.2 Isomap; Isomap Algorithm; 3.3 Locally Linear Embedding; LLE Algorithm; 3.4 Hessian LLE; hLLE Algorithm; 4. Dimensionality Estimators; 5. Software; 5.1 Core Functionality; 5.2 User Interface; 6. Analyzing Two Material Science Data Sets: Apatites and Organic Solar Cells; 6.1 Apatite Data; Dimensionality Estimation 327 $a6.2 Unraveling Process-Morphology Pathways of Organic Solar Cells using SETDiR 330 $aMaterials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this ""quantitative avalanche""-and the resulting complex, multi-factor analyses required to understand it-means that interest, investment, and research are revisi 606 $aData mining 606 $aMaterials$xData processing 606 $aMaterials science 608 $aElectronic books. 615 0$aData mining. 615 0$aMaterials$xData processing. 615 0$aMaterials science. 676 $a620.110285 701 $aRajan$b Krishna$0859453 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910452778103321 996 $aInformatics for materials science and engineering$91918004 997 $aUNINA LEADER 03070nam 2200625 450 001 9910827041803321 005 20240205155449.0 010 $a1-119-85118-1 010 $a1-119-85119-X 010 $a1-119-85117-3 024 7 $a10.1002/9781119851196 035 $a(CKB)4100000011995260 035 $a(MiAaPQ)EBC6690677 035 $a(Au-PeEL)EBL6690677 035 $a(OCoLC)1263872911 035 $a(OCoLC)1269508933 035 $a(OCoLC-P)1269508933 035 $a(CaSebORM)9781786306029 035 $a(EXLCZ)994100000011995260 100 $a20220421d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aConcepts and semantics of programming languages 2 $emodular and object-oriented constructs with Ocaml, Python, C++, Ada and Java /$fThe?re?se Hardin [and three others] 210 1$aHoboken :$cISTE Ltd / John Wiley and Sons Inc,$d[2021] 210 4$dİ2021 215 $a1 online resource (265 pages) 225 1 $aComputer engineering series 300 $aIncludes index. 311 $a1-78630-602-6 330 $aThis book - composed of two volumes - explores the syntactical constructs of the most common programming languages, and sheds a mathematical light on their semantics, providing also an accurate presentation of the material aspects that interfere with coding. Concepts and Semantics of Programming Languages 2 presents an original semantic model, collectively taking into account all of the constructs and operations of modules and classes: visibility, import, export, delayed definitions, parameterization by types and values, extensions, etc. The model serves for the study of Ada and OCaml modules, as well as C header files. It can be deployed to model object and class features, and is thus used to describe Java, C++, OCaml and Python classes. This book is intended not only for computer science students and teachers but also seasoned programmers, who will find a guide to reading reference manuals and the foundations of program verification. 410 0$aComputer engineering series. 606 $aProgramming languages (Electronic computers)$xSemantics 606 $aOCaml (Computer program language) 606 $aPython (Computer program language) 606 $aC++ (Computer program language) 606 $aAda (Computer program language) 606 $aJava (Computer program language) 615 0$aProgramming languages (Electronic computers)$xSemantics. 615 0$aOCaml (Computer program language) 615 0$aPython (Computer program language) 615 0$aC++ (Computer program language) 615 0$aAda (Computer program language) 615 0$aJava (Computer program language) 676 $a005.13 700 $aHardin$b The?re?se$01175257 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910827041803321 996 $aConcepts and semantics of programming languages 2$93967537 997 $aUNINA