LEADER 00765nam0-22002771--450- 001 990008418440403321 005 20061204110300.0 035 $a000841844 035 $aFED01000841844 035 $a(Aleph)000841844FED01 035 $a000841844 100 $a20061114d1912----km-y0itay50------ba 101 0 $ager 102 $aDE 105 $ay---m---001yy 200 1 $a<>Rückversicherung$einagural dissertation...$fGeorg Obermayer 210 $aBorna ; Leipzig$cR. Noske$d1912 215 $aIX, 74 p.$din 8° 700 1$aObermayer,$bGeorg$0426210 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008418440403321 952 $aDissertaz. S II 3$b21036$fFGBC 959 $aFGBC 996 $aRückversicherung$9725940 997 $aUNINA LEADER 06087nam 2200817Ia 450 001 9910826929703321 005 20200520144314.0 010 $a9786612384981 010 $a9781282384989 010 $a1282384988 010 $a9780470682425 010 $a0470682426 010 $a9780470682418 010 $a0470682418 035 $a(CKB)1000000000822191 035 $a(EBL)470092 035 $a(OCoLC)476311768 035 $a(SSID)ssj0000342082 035 $a(PQKBManifestationID)11278384 035 $a(PQKBTitleCode)TC0000342082 035 $a(PQKBWorkID)10270781 035 $a(PQKB)11441310 035 $a(MiAaPQ)EBC470092 035 $a(Au-PeEL)EBL470092 035 $a(CaPaEBR)ebr10351121 035 $a(CaONFJC)MIL238498 035 $a(OCoLC)144557980 035 $a(FINmELB)ELB178579 035 $a(Perlego)2766976 035 $a(EXLCZ)991000000000822191 100 $a20090818d2009 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRadiating non-uniform transmission line systems and the partial element equivalent circuit method /$fJurgen Nitsch, Frank Gronwald and Gunter Wollenberg 205 $a1st ed. 210 $aHoboken, NJ $cJ. Wiley$dc2009 215 $a1 online resource (350 p.) 300 $aDescription based upon print version of record. 311 08$a9780470845363 311 08$a0470845368 320 $aIncludes bibliographical references and index. 327 $aRADIATING NONUNIFORM TRANSMISSION-LINE SYSTEMS AND THE PARTIAL ELEMENT EQUIVALENT CIRCUIT METHOD; Contents; Preface; References; Acknowledgments; List of Symbols; Introduction; References; 1 Fundamentals of Electrodynamics; 1.1 Maxwell Equations Derived from Conservation Laws - an Axiomatic Approach; 1.1.1 Charge Conservation; 1.1.2 Lorentz Force and Magnetic Flux Conservation; 1.1.3 Constitutive Relations and the Properties of Space time; 1.1.4 Remarks; 1.2 The Electromagnetic Field as a Gauge Field - a Gauge Field Approach 327 $a1.2.1 Differences of Physical Fields that are Described by Reference Systems 1.2.2 The Phase of Microscopic Matter Fields; 1.2.3 The Reference Frame of a Phase; 1.2.4 The Gauge Fields of a Phase; 1.2.5 Dynamics of the Gauge Field; 1.3 The Relation Between the Axiomatic Approach and the Gauge Field Approach; 1.3.1 No ether Theorem and Electric Charge Conservation; 1.3.2 Minimal Coupling and the Lorentz Force; 1.3.3 Bianchi Identity and Magnetic Flux Conservation; 1.3.4 Gauge Approach and Constitutive Relations; 1.4 Solutions of Maxwell Equations; 1.4.1 Wave Equations 327 $a1.4.1.1 Decoupling of Maxwell Equations 1.4.1.2 Equations of Motion for the Electromagnetic Potentials; 1.4.1.3 Maxwell Equations in the Frequency Domain and Helmholtz Equations; 1.4.1.4 Maxwell Equations in Reciprocal Space; 1.4.2 Boundary Conditions at Interfaces; 1.4.3 Dynamical and Nondynamical Components of the Electromagnetic Field; 1.4.3.1 Helmholtz's Vector Theorem, Longitudinal and Transverse Fields; 1.4.3.2 Nondynamical Maxwell Equations as Boundary Conditions in Time; 1.4.3.3 Longitudinal Part of the Maxwell Equations; 1.4.3.4 Transverse Part of the Maxwell Equations 327 $a1.4.4 Electromagnetic Energy and the Singularities of the Electromagnetic Field 1.4.5 Coulomb Fields and Radiation Fields; 1.4.6 The Green's Function Method; 1.4.6.1 Basic Ideas; 1.4.6.2 Self-Adjointness of Differential Operators and Boundary Conditions; 1.4.6.3 General Solutions of Maxwell Equations; 1.4.6.4 Basic Relations Between Electromagnetic Green's Functions; 1.5 Boundary Value Problems and Integral Equations; 1.5.1 Surface Integral Equations in Short; 1.5.2 The Standard Electric Field Integral Equations of Antenna Theory and Radiating Nonuniform Transmission-Line Systems 327 $a1.5.2.1 Pocklington's Equation 1.5.2.2 Hall ?en's Equation; 1.5.2.3 Mixed-Potential Integral Equation; 1.5.2.4 Schelkunoff 's Equation; References; 2 Nonuniform Transmission-Line Systems; 2.1 Multiconductor Transmission Lines: General Equations; 2.1.1 Geometric Representation of Nonuniform Transmission Lines; 2.1.1.1 Local Coordinate System; 2.1.1.2 Tangential Surface Vector; 2.1.1.3 Volume and Surface Integrals; 2.1.2 Derivation of Generalized Transmission-Line Equations; 2.1.2.1 Continuity Equation; 2.1.2.2 Reconstruction of the Densities; 2.1.3 Mixed Potential Integral Equation 327 $a2.1.3.1 Thin-Wire Approximation 330 $aHigh frequencies of densely packed modern electronic equipment turn even the smallest piece of wire into a transmission line with signal retardation, dispersion, attenuation, and distortion. In electromagnetic environments with high-power microwave or ultra-wideband sources, transmission lines pick up noise currents generated by external electromagnetic fields. These are superimposed on essential signals, the lines acting not only as receiving antennas but radiating parts of the signal energy into the environment. This book is outstanding in its originality. While many textbooks rephrase 606 $aElectromagnetic compatibility$xMathematical models 606 $aElectric lines$xMathematical models 606 $aElectronic circuit design$xData processing 606 $aElectronic apparatus and appliances$xDesign and construction$xData processing 615 0$aElectromagnetic compatibility$xMathematical models. 615 0$aElectric lines$xMathematical models. 615 0$aElectronic circuit design$xData processing. 615 0$aElectronic apparatus and appliances$xDesign and construction$xData processing. 676 $a621.38131 676 $a621.382/24 700 $aNitsch$b Jurgen$01622258 701 $aGronwald$b Frank$01622259 701 $aWollenberg$b Gunter$01622260 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826929703321 996 $aRadiating non-uniform transmission line systems and the partial element equivalent circuit method$93956021 997 $aUNINA