LEADER 04371nam 22006132 450 001 9910826901003321 005 20151005020621.0 010 $a1-107-06541-0 010 $a1-139-88961-3 010 $a1-107-05694-2 010 $a1-107-05479-6 010 $a1-107-05809-0 010 $a1-139-34348-3 010 $a1-107-05940-2 010 $a1-107-05587-3 035 $a(CKB)2670000000353353 035 $a(EBL)1182967 035 $a(Au-PeEL)EBL1182967 035 $a(CaPaEBR)ebr10695347 035 $a(CaONFJC)MIL494696 035 $a(OCoLC)842932618 035 $a(UkCbUP)CR9781139343480 035 $a(MiAaPQ)EBC1182967 035 $a(PPN)261360108 035 $a(EXLCZ)992670000000353353 100 $a20120313d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to the statistical physics of integrable many-body systems /$fLadislav S?amaj, Zolta?n Bajnok 205 $a1st ed. 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (xix, 504 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-03043-9 320 $aIncludes bibliographical references and index. 327 $aPart I. Spinless Bose and Fermi Gases. 1. Particles with nearest-neighbour interactions: Bethe ansatz and the ground state; 2. Bethe ansatz: zero-temperature thermodynamics and excitations; 3. Bethe ansatz: finite-temperature thermodynamics; 4. Particles with inverse-square interactions; Part II. Quantum Inverse Scattering Method. 5. QISM: Yang-Baxter equation; 6. QISM: transfer matrix and its diagonalization; 7. QISM: treatment of boundary conditions; 8. Nested Bethe ansatz for spin-1/2 fermions with delta interactions; 9. Thermodynamics of spin-1/2 fermions with delta interactions; Part III. Quantum Spin Chains. 10. Quantum Ising chain in a transverse field; 11. XXZ Heisenberg chain: Bethe ansatz and the ground state; 12. XXZ Heisenberg chain: ground state in the presence of magnetic field; 13. XXZ Heisenberg chain: excited states; 14. XXX Heisenberg chain: thermodynamics with strings; 15. XXZ Heisenberg chain: thermodynamics without strings; 16. XYZ Heisenberg chain; 17. Integrable isotropic chains with arbitrary spin; Part IV. Strongly Correlated Electrons. 18. Hubbard model; 19. Kondo effect; 20. Luttinger many-fermion model; 21. Integrable BCS superconductors; Part V. Sine-Gordon Model. 22. Classical sine-Gordon theory; 23. Conformal quantization; 24. Lagrangian quantization; 25. Bootstrap quantization; 26. UV-IR relation; 27. Exact finite volume description from XXZ; 28. Two-dimensional Coulomb gas. 330 $aIncluding topics not traditionally covered in literature, such as (1+1)-dimensional QFT and classical 2D Coulomb gases, this book considers a wide range of models and demonstrates a number of situations to which they can be applied. Beginning with a treatise of nonrelativistic 1D continuum Fermi and Bose quantum gases of identical spinless particles, the book describes the quantum inverse scattering method and the analysis of the related Yang-Baxter equation and integrable quantum Heisenberg models. It also discusses systems within condensed matter physics, the complete solution of the sine-Gordon model and modern trends in the thermodynamic Bethe ansatz. Each chapter concludes with problems and solutions to help consolidate the reader's understanding of the theory and its applications. Basic knowledge of quantum mechanics and equilibrium statistical physics is assumed, making this book suitable for graduate students and researchers in statistical physics, quantum mechanics and mathematical and theoretical physics. 606 $aQuantum theory$xStatistical methods 606 $aMany-body problem 615 0$aQuantum theory$xStatistical methods. 615 0$aMany-body problem. 676 $a530.12015195 686 $aSCI040000$2bisacsh 700 $aS?amaj$b Ladislav$f1959-$01640468 702 $aBajnok$b Zolta?n 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910826901003321 996 $aIntroduction to the statistical physics of integrable many-body systems$93984027 997 $aUNINA