LEADER 00986nam a2200229 i 4500 001 991000809279707536 005 20020506124419.0 008 930723s1991 ||| ||| | ita 035 $ab10132594-39ule_inst 035 $aLE00637201$9ExL 040 $aDip.to Fisica$bita 100 1 $aMartano, M.$0461066 245 10$aAnalisi spettroscopica del plasma generato da impulsi laser su campioni solidi /$claureanda Maristella Martano ; relatore Alessio Perrone 260 $aLecce :$bUniversità degli studi, Lecce. Facoltà di Scienze. Corso di laurea in Fisica,$ca.a. 1991-92 300 $a114 p. 700 1 $aPerrone, Alessio 907 $a.b10132594$b02-04-14$c27-06-02 912 $a991000809279707536 945 $aLE006 T529$g1$iLE006-T529$lle006$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i10155661$z27-06-02 996 $aAnalisi spettroscopica del plasma generato da impulsi laser su campioni solidi$9186014 997 $aUNISALENTO 998 $ale006$b01-01-93$cm$da $e-$feng$gxx $h0$i1 LEADER 05502nam 2200697Ia 450 001 9910826537403321 005 20240313225118.0 010 $a9781118592632 010 $a1118592638 010 $a9781118592656 010 $a1118592654 010 $a9781118592649 010 $a1118592646 035 $a(CKB)2670000000359259 035 $a(EBL)1204915 035 $a(OCoLC)850164908 035 $a(MiAaPQ)EBC1204915 035 $a(DLC) 2013017194 035 $a(Au-PeEL)EBL1204915 035 $a(CaPaEBR)ebr10716636 035 $a(CaONFJC)MIL494660 035 $a(Perlego)1001214 035 $a(EXLCZ)992670000000359259 100 $a20130423d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$a3D face modeling, analysis, and recognition /$fMohamed Daoudi, Anuj Srivastava, Remco Veltkamp 205 $a1st ed. 210 $aSingapore $cWiley$d2013 215 $a1 online resource (221 p.) 300 $aDescription based upon print version of record. 311 08$a9780470666418 311 08$a0470666412 320 $aIncludes bibliographical references and index. 327 $a3D FACE MODELING, ANALYSIS AND RECOGNITION; Contents; Preface; List of Contributors; 1 3D Face Modeling; 1.1 Challenges and Taxonomy of Techniques; 1.2 Background; 1.2.1 Depth from Triangulation; 1.2.2 Shape from Shading; 1.2.3 Depth from Time of Flight (ToF); 1.3 Static 3D Face Modeling; 1.3.1 Laser-stripe Scanning; 1.3.2 Time-coded Structured Light; 1.3.3 Multiview Static Reconstruction; 1.4 Dynamic 3D Face Reconstruction; 1.4.1 Multiview Dynamic Reconstruction; 1.4.2 Photometric Stereo; 1.4.3 Structured Light; 1.4.4 Spacetime Faces; 1.4.5 Template-based Post-processing 327 $a1.5 Summary and ConclusionsExercises; References; 2 3D Face Surface Analysis and Recognition Based on Facial Surface Features; 2.1 Geometry of 3D Facial Surface; 2.1.1 Primary 3D Surface Representations; 2.1.2 Rigid 3D Transformations; 2.1.3 Decimation of 3D Surfaces; 2.1.4 Geometric and Topological Aspects of the Human Face; 2.2 Curvatures Extraction from 3D Face Surface; 2.2.1 Theoretical Concepts on 3D Curvatures; 2.2.2 Practical Curvature Extraction Methods; 2.3 3D Face Segmentation; 2.3.1 Curvature-based 3D Face Segmentation; 2.3.2 Bilateral Profile-based 3D Face Segmentation 327 $a2.4 3D Face Surface Feature Extraction and Matching2.4.1 Holistic 3D Facial Features; 2.4.2 Regional 3D Facial Features; 2.4.3 Point 3D Facial Features; 2.5 Deformation Modeling of 3D Face Surface; Exercises; References; 3 3D Face Surface Analysis and Recognition Based on Facial Curves; 3.1 Introduction; 3.2 Facial Surface Modeling; 3.3 Parametric Representation of Curves; 3.4 Facial Shape Representation Using Radial Curves; 3.5 Shape Space of Open Curves; 3.5.1 Shape Representation; 3.5.2 Geometry of Preshape Space; 3.5.3 Reparametrization Estimation by Using Dynamic Programming 327 $a3.5.4 Extension to Facial Surfaces Shape Analysis3.6 The Dense Scalar Field (DSF); 3.7 Statistical Shape Analysis; 3.7.1 Statistics on Manifolds: Karcher Mean; 3.7.2 Learning Statistical Models in Shape Space; 3.8 Applications of Statistical Shape Analysis; 3.8.1 3D Face Restoration; 3.8.2 Hierarchical Organization of Facial Shapes; 3.9 The Iso-geodesic Stripes; 3.9.1 Extraction of Facial Stripes; 3.9.2 Computing Relationships between Facial Stripes; 3.9.3 Face Representation and Matching Using Iso-geodesic Stripes; Exercises; Glossary; References 327 $a4 3D Morphable Models for Face Surface Analysis and Recognition4.1 Introduction; 4.2 Data Sets; 4.3 Face Model Fitting; 4.3.1 Distance Measure; 4.3.2 Iterative Face Fitting; 4.3.3 Coarse Fitting; 4.3.4 Fine Fitting; 4.3.5 Multiple Components; 4.3.6 Results; 4.4 Dynamic Model Expansion; 4.4.1 Bootstrapping Algorithm; 4.4.2 Results; 4.5 Face Matching; 4.5.1 Comparison; 4.5.2 Results; 4.6 Concluding Remarks; Exercises; References; 5 Applications; 5.1 Introduction; 5.2 3D Face Databases; 5.3 3D Face Recognition; 5.3.1 Challenges of 3D Face Recognition; 5.3.2 3D Face Recognition: State of the Art 327 $a5.3.3 Partial Face Matching 330 $a 3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and appl 606 $aFace$xComputer simulation 606 $aHuman face recognition (Computer science) 606 $aThree-dimensional imaging 615 0$aFace$xComputer simulation. 615 0$aHuman face recognition (Computer science) 615 0$aThree-dimensional imaging. 676 $a006.6/93 700 $aDaoudi$b Mohamed$f1964-$0307166 701 $aSrivastava$b Anuj$f1968-$01594600 701 $aVeltkamp$b Remco C.$f1963-$01594601 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826537403321 996 $a3D face modeling, analysis, and recognition$93915180 997 $aUNINA