LEADER 05577nam 2200697Ia 450 001 9910826322103321 005 20200520144314.0 010 $a1-119-94092-3 010 $a1-280-59152-8 010 $a9786613621351 010 $a1-119-94588-7 010 $a1-119-94589-5 035 $a(CKB)2670000000161888 035 $a(EBL)879006 035 $a(OCoLC)784124287 035 $a(SSID)ssj0000622990 035 $a(PQKBManifestationID)11389590 035 $a(PQKBTitleCode)TC0000622990 035 $a(PQKBWorkID)10647936 035 $a(PQKB)10365257 035 $a(MiAaPQ)EBC879006 035 $a(Au-PeEL)EBL879006 035 $a(CaPaEBR)ebr10546537 035 $a(CaONFJC)MIL362135 035 $a(EXLCZ)992670000000161888 100 $a20111227d2012 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 04$aThe importance of Pi-interactions in crystal engineering $efrontiers in crystal engineering /$fedited by Edward R.T. Tiekink, Julio Zukerman-Schpector 205 $a2nd ed. 210 $aHoboken, NJ $cWiley$d2012 215 $a1 online resource (402 p.) 300 $aDescription based upon print version of record. 311 $a0-470-68827-0 320 $aIncludes bibliographical references and index. 327 $aThe Importance of Pi-Interactions in Crystal Engineering; Contents; Preface; List of Contributors; 1 The CH/p Hydrogen Bond: Implication in Crystal Engineering; 1.1 Introduction; 1.1.1 Evidence and the Nature of the CH/p Hydrogen Bond; 1.1.2 Directionality of the CH/p Hydrogen Bond; 1.2 Cooperative Effect of the CH/p Hydrogen Bond; 1.2.1 Cooperative Effect as Evidenced by High-Level Ab Initio MO Calculations; 1.2.2 Cooperative Effect as Evidenced by Periodic Ab Initio MO Calculations; 1.2.3 Cooperative Effect as Evidenced by Stabilisation of Materials in Aromatic Nanochannels 327 $a1.2.4 Optical Resolution 1.3 CH/p Hydrogen Bonds in Supramolecular Chemistry; 1.3.1 Crystal Packing; 1.3.2 Lattice Inclusion Type Clathrates; 1.3.3 Cavity Inclusion Type Clathrates; 1.4 Crystallographic Database Analyses; 1.4.1 CH/p Hydrogen Bonds as Evidenced by CSD Analyses; 1.4.2 Systematic CSD Analyses; 1.5 Systematic CSD Analyses of the CH/p Hydrogen Bond; 1.5.1 Method and General Survey of Organic Molecules; 1.5.2 Organometallic Compounds; 1.6 Summary and Outlook; Acknowledgments; References; 2 New Aspects of Aromatic p. . . p and C-H . . . p Interactions in Crystal Engineering 327 $a2.1 Introduction 2.1.1 Planar Aromatic Molecules; 2.1.2 Edge-Face (EF) and Offset Face-Face (OFF) Interactions; 2.1.3 Competition between EF and OFF Interactions; 2.1.4 Edge-Edge (EE) Interactions; 2.2 Three-Dimensional Aromatic Structures; 2.2.1 Aryl . . . Aryl Embrace Interactions; 2.2.2 Design of Heteroaromatic Inclusion Hosts; 2.3 Endo,Endo-Facial Dimers; 2.3.1 The Basic P4AE Interaction Motif; 2.3.2 Discrete Endo,Endo-Facial Dimers; 2.3.3 Aggregated Endo,Endo-Facial Dimers; 2.4 Multiply Halogenated Heteroaromatic Molecules; 2.4.1 The p-Halogen Dimer (PHD) Interaction 327 $a2.4.2 The PHD Unit in Staircase Inclusion Structures 2.4.3 The PHD Unit in Layer Structures; 2.4.4 Switch from Endo,Endo-Facial Dimer to PHD Unit; 2.5 Expansion of the Endo,Endo-Facial Dimer; 2.5.1 Penannular Guest Enclosure; 2.5.2 Types of Molecular Pens; 2.6 (EF)6 Brick-Like Building Blocks; 2.6.1 Phenylated Heteroaromatic Molecules; 2.6.2 Packing of the Bricks; 2.6.3 Different Inclusion Families and Their Convergence; 2.7 Other Novel Multiple Edge-Face Assemblies; 2.7.1 The (EF)2 Handclasp Interaction; 2.7.2 Formation of Hexameric Inclusion Capsules 327 $a2.7.3 Formation of Hexameric Hydrate Clusters 2.8 Other Types of Aryl-Aryl Contacts; 2.8.1 Different OFF Packing Geometries; 2.8.2 Exo,Endo-Facial OFF Interactions; 2.8.3 Exo,Exo-Facial OFF Interactions; 2.8.4 Swivel Interactions; 2.9 Conclusions; Acknowledgments; References; 3 CH-p and p-p Interactions as Contributors to the Guest Binding in Reversible Inclusion and Encapsulation Complexes; 3.1 Introduction; 3.1.1 Theoretical Considerations of Aromatic-Aromatic (p-p) Interactions and CH-p Interactions 327 $a3.2 Probing Aromatic-Aromatic (p-p) Interactions and CH-p Interactions with Solid-State Structures of Reversible Inclusion and Encapsulation Complexes 330 $aCrystal engineers aim to control the way molecules aggregate in the crystalline phase and are therefore concerned with crystal structure prediction, polymorphism, and discovering the relative importance of different types of intermolecular forces and their influence on molecular structure. In order to design crystal structures, knowledge of the types, strengths, and nature of possible intermolecular interactions is essential. Non-covalent interactions involving p-systems is a theme that is under extensive investigation as these interactions can be inductors for the assembly of a vast array of 606 $aMolecular crystals 606 $aSupramolecular organometallic chemistry 606 $aCrystal growth 615 0$aMolecular crystals. 615 0$aSupramolecular organometallic chemistry. 615 0$aCrystal growth. 676 $a548/.3 701 $aTiekink$b Edward R. T$0867117 701 $aZukerman-Schpector$b Julio$01712404 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826322103321 996 $aThe importance of Pi-interactions in crystal engineering$94104507 997 $aUNINA