LEADER 05807oam 2200805 a 450 001 9910826220503321 005 20210114051049.0 010 $a9786613695079 010 $a9781119940906 010 $a1119940907 010 $a9781280784682 010 $a1280784687 010 $a9781119945154 010 $a1119945151 010 $a9781119945161 010 $a111994516X 035 $a(CKB)3460000000080858 035 $a(EBL)888523 035 $a(SSID)ssj0000641198 035 $a(PQKBManifestationID)11376158 035 $a(PQKBTitleCode)TC0000641198 035 $a(PQKBWorkID)10622698 035 $a(PQKB)10159656 035 $a(DLC) 2012002746 035 $a(OCoLC)793104236 035 $a(CaSebORM)9781119940906 035 $a(MiAaPQ)EBC888523 035 $a(OCoLC)855371667 035 $a(OCoLC)ocn855371667 035 $a(Perlego)1010894 035 $a(EXLCZ)993460000000080858 100 $a20120119d2012 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSilicon photonics $efundamentals and devices /$fM.J. Deen, P.K. Basu 205 $a1st edition 210 $aChichester, West Sussex, UK ;$aHoboken, N.J. $cWiley$d2012 215 $a1 online resource (455 p.) 225 1 $aWiley Series in Materials for Electronic & Optoelectronic Applications 300 $aDescription based upon print version of record. 311 08$a9780470517505 311 08$a0470517506 320 $aIncludes bibliographical references and index. 327 $aSilicon Photonics: Fundamentals and Devices; Contents; Series Preface; Preface; 1 Introduction to Silicon Photonics; 1.1 Introduction; 1.2 VLSI: Past, Present, and Future Roadmap; 1.3 The Interconnect Problem in VLSI; 1.4 The Long-Haul Optical Communication Link; 1.4.1 Basic Link and Components; 1.4.2 Materials and Integration; 1.5 Data Network; 1.6 Conclusions; 1.7 Scope of the Book; References; 2 Basic Properties of Silicon; 2.1 Introduction; 2.2 Band Structure; 2.2.1 E-k Diagram: General Considerations; 2.2.2 Band Properties near Extremas; 2.2.3 Refined Theory for Band Structures 327 $a2.2.4 Temperature- and Pressure-Dependent Band Gap 2.2.5 Band Structure in Ge; 2.3 Density-of-States Function; 2.4 Impurities; 2.4.1 Donors and Acceptors; 2.4.2 Isoelectronic Impurities; 2.5 Alloys of Silicon and Other Group IV Elements; 2.5.1 Different Alloy Systems; 2.5.2 Lattice Constants; 2.5.3 Band Structures of Unstrained Alloys; 2.6 Heterojunctions and Band Lineup; 2.7 Si-Based Heterostructures; 2.7.1 Lattice-Mismatched Heteroepitaxy; 2.7.2 Pseudomorphic Growth and Critical Thickness; 2.7.3 Elasticity Theory: Stress and Strain; 2.7.4 Expressions for Critical Thickness 327 $a2.7.5 Strain Symmetric Structures and Virtual Substrates 2.7.6 Band Offsets and Band Lineup; 2.7.7 Electronic Properties of SiGe/Si Heterostructures; 2.8 Direct Gap: Ge/SiGeSn Heterojunctions; 2.8.1 Structures; 2.8.2 Band Edges and Band Lineup; Problems; References; Suggested Readings; 3 Quantum Structures; 3.1 Introduction; 3.2 Quantum Wells; 3.2.1 Condition for Quantum Confinement; 3.2.2 A Representative Structure; 3.2.3 Simplified Energy Levels; 3.2.4 Density-of-States in Two Dimensions; 3.2.5 Finite Quantum Well; 3.2.6 Refined Methods; 3.2.7 Different Band Alignments 327 $a3.3 Quantum Wires and Dots 3.3.1 Subbands and DOS in Quantum Wires; 3.3.2 Quantum Dots; 3.4 Superlattices; 3.5 Si-Based Quantum Structures; 3.5.1 Electron Subband Structure; 3.5.2 Hole Subbands; 3.5.3 Quantum Wells and Barriers; 3.6 Effect of Electric Field; Problems; References; Suggested Readings; 4 Optical Processes; 4.1 Introduction; 4.2 Optical Constants; 4.3 Basic Concepts; 4.3.1 Absorption and Emission; 4.3.2 Absorption and Emission Rates; 4.4 Absorption Processes in Semiconductors; 4.5 Fundamental Absorption in Direct Gap; 4.5.1 Conservation Laws 327 $a4.5.2 Calculation of Absorption Coefficient 4.6 Fundamental Absorption in Indirect Gap; 4.6.1 Theory of Absorption; 4.6.2 Absorption Spectra in Si; 4.6.3 Absorption Spectra in Ge; 4.7 Absorption and Gain; 4.8 Intervalence Band Absorption; 4.9 Free-carrier Absorption; 4.10 Recombination and Luminescence; 4.10.1 Luminescence Lifetime; 4.10.2 Carrier Lifetime: Dependence on Carrier Density; 4.10.3 Absorption and Recombination; 4.10.4 Microscopic Theory of Recombination; 4.11 Nonradiative Recombination; 4.11.1 Recombination via Traps; 4.11.2 Auger Recombination; 4.11.3 Surface Recombination 327 $a4.11.4 Recombination of Complexes 330 $aThe creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon 410 0$aWiley Series in Materials for Electronic & Optoelectronic Applications 606 $aSilicon$xOptical properties 606 $aOptoelectronic devices 606 $aPhotonics 615 0$aSilicon$xOptical properties. 615 0$aOptoelectronic devices. 615 0$aPhotonics. 676 $a621.38152 700 $aDeen$b M. Jamal$01623707 701 $aBasu$b P. K$g(Prasanta Kumar)$01623708 801 0$bDLC 801 1$bDLC 801 2$bDLC 906 $aBOOK 912 $a9910826220503321 996 $aSilicon photonics$93958281 997 $aUNINA