LEADER 01978nam 2200445 450 001 9910826193603321 005 20190814100340.0 010 $a1-4704-5251-0 035 $a(CKB)4100000008483127 035 $a(MiAaPQ)EBC5788266 035 $a(OCoLC)on1090171007 035 $a(PPN)23729107X 035 $a(EXLCZ)994100000008483127 100 $a20190628d2019 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDistribution of resonances in scattering by thin barriers /$fJeffrey Galkowski 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2019] 210 4$dİ2019 215 $a1 online resource (ix, 152 pages) $cillustrations 225 1 $aMemoirs of the American Mathematical Society ;$vVolume 259, Number 1248 300 $a"May 2019, volume 259, number 1248 (fifth of 8 numbers)." 311 $a1-4704-3572-1 320 $aIncludes bibliographical references (pages 149-152). 330 $aThe author studies high energy resonances for the operators $-\Delta_{\partial\Omega,\delta}:=-\Delta \delta_{\partial\Omega}\otimes V\quad \textrm{and}\quad -\Delta_{\partial\Omega,\delta'}:=-\Delta \delta_{\partial\Omega}'\otimes V\partial_\nu$ where $\Omega\subset{\mathbb{R}}^{d}$ is strictly convex with smooth boundary, $V:L^{2}(\partial\Omega)\to L^{2}(\partial\Omega)$ may depend on frequency, and $\delta_{\partial\Omega}$ is the surface measure on $\partial\Omega$. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 259, Number 1248. 606 $aScattering (Mathematics) 615 0$aScattering (Mathematics) 676 $a515.724 700 $aGalkowski$b Jeffrey$01696143 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826193603321 996 $aDistribution of resonances in scattering by thin barriers$94075889 997 $aUNINA