LEADER 05315nam 2200745 a 450 001 9910826058003321 005 20240401194640.0 010 $a9781118648681 010 $a1118648684 010 $a9781118648674 010 $a1118648676 010 $a9781118648698 010 $a1118648692 035 $a(CKB)2550000001111817 035 $a(EBL)1434096 035 $a(OCoLC)862047233 035 $a(SSID)ssj0001034931 035 $a(PQKBManifestationID)11586781 035 $a(PQKBTitleCode)TC0001034931 035 $a(PQKBWorkID)11015878 035 $a(PQKB)11713127 035 $a(MiAaPQ)EBC1434096 035 $a(Au-PeEL)EBL1434096 035 $a(CaPaEBR)ebr10748694 035 $a(CaONFJC)MIL511709 035 $a(Perlego)999973 035 $a(EXLCZ)992550000001111817 100 $a20130531d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMethod of moments for 2d scattering problems $ebasic concepts and applications /$fChristophe Bourlier, Nicolas Pinel, Gildas Kubicke? 205 $a1st ed. 210 $aHoboken, N.J. $cISTE Ltd/John Wiley and Sons Inc$d2013 215 $a1 online resource (162 p.) 225 1 $aFocus waves series,$x2051-2481 300 $aDescription based upon print version of record. 311 08$a9781848214729 311 08$a1848214723 311 08$a9781299804586 311 08$a1299804586 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; Preface; Introduction; Chapter 1. Integral Equations For A Single Scatterer: Method Of Moments And Rough Surfaces; 1.1. Introduction; 1.2. Integral equations; 1.2.1. TE and TM polarizations and boundary conditions; 1.2.2. Electric and magnetic currents for a 2D problem; 1.2.3. Huygens' principle and extinction theorem; 1.2.4. Radar cross-section (RCS); 1.2.5. Normalized radar cross-section (NRCS); 1.3. Method of moments with point-matching method; 1.4. Application to a surface; 1.4.1. The Dirichlet boundary conditions; 1.4.2. The Neumann boundary conditions 327 $a1.4.3. General case 1.4.4. Impedance boundary condition; 1.5. Forward-Backward (FB) method; 1.6. Random rough surface generation; 1.6.1. Statistical parameters; 1.6.2. Generation of a random profile; 1.6.3. Simulations; 1.6.4. Conclusion; Chapter 2. Validation of the Method of Moments for a Single Scatterer; 2.1. Introduction; 2.2. Solutions of a scattering problem; 2.3. Comparison with the exact solution of a circular cylinder in free space; 2.3.1. Solution of the Helmholtz equation; 2.3.2. Dirichlet boundary conditions; 2.3.3. Neumann boundary conditions; 2.3.4. Dielectric cylinder 327 $a2.3.5. MoM for an elliptical cylinder 2.3.6. Numerical comparisons for a circular cylinder; 2.3.7. Conclusion; 2.4. PO approximation; 2.4.1. Formulation; 2.4.2. Applications; 2.4.3. Sea-like surface; 2.5. FB method; 2.6. Conclusion; Chapter 3. Scattering from two Illuminated Scatterers; 3.1. Introduction; 3.2. Integral equations and method of moments; 3.2.1. Integral equations for two scatterers; 3.2.2. Method of moments for two scatterers; 3.2.3. Method of moments for P scatterers; 3.3. Efficient inversion of the impedance matrix: E-PILE method for two scatterers 327 $a3.3.1. Mathematical formulation 3.3.2. Numerical results; 3.4. E-PILE method combined with PO and FB; 3.4.1. E-PILE hybridized with FB; 3.4.2. E-PILE hybridized with PO; 3.5. Conclusion; Chapter 4. Scattering from two Scatterers Where Only one is Illuminated; 4.1. Introduction; 4.2. Integral equations and method of moments; 4.2.1. Integral equations; 4.2.2. Method of moments; 4.2.3. Case for which scatterer 2 is perfectly conducting; 4.2.4. Numerical results; 4.3. Efficient inversion of the impedance matrix: PILE method; 4.3.1. Mathematical formulation; 4.3.2. Numerical results 327 $a4.4. PILE method combined with FB or PO4.4.1. PILE hybridized with FB; 4.4.2. PILE hybridized with PO; 4.5. Conclusion; Appendix. Matlab Codes; Bibliography; Index 330 $aElectromagnetic wave scattering from randomly rough surfaces in the presence of scatterers is an active, interdisciplinary area of research with myriad practical applications in fields such as optics, acoustics, geoscience and remote sensing.In this book, the Method of Moments (MoM) is applied to compute the field scattered by scatterers such as canonical objects (cylinder or plate) or a randomly rough surface, and also by an object above or below a random rough surface. Since the problem is considered to be 2D, the integral equations (IEs) are scalar and only the TE (transverse elect 410 0$aFocus series in waves. 606 $aElectromagnetic waves$xScattering$xMathematical models 615 0$aElectromagnetic waves$xScattering$xMathematical models. 676 $a530.141 700 $aBourlier$b Christophe$0859622 701 $aPinel$b Nicola?s$01710908 701 $aKubicke?$b Gildas$01721191 712 02$aInternational Society for Technology in Education. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826058003321 996 $aMethod of moments for 2d scattering problems$94120501 997 $aUNINA