LEADER 05680nam 2200781 a 450 001 9910826057803321 005 20240314014744.0 010 $a9781118642573 010 $a1118642570 010 $a9781118642771 010 $a1118642775 010 $a9781118642566 010 $a1118642562 035 $a(CKB)2550000001111823 035 $a(EBL)1318208 035 $a(OCoLC)854976279 035 $a(SSID)ssj0000951555 035 $a(PQKBManifestationID)11588815 035 $a(PQKBTitleCode)TC0000951555 035 $a(PQKBWorkID)10892997 035 $a(PQKB)10721142 035 $a(MiAaPQ)EBC1318208 035 $a(Au-PeEL)EBL1318208 035 $a(CaPaEBR)ebr10748717 035 $a(CaONFJC)MIL511715 035 $a(PPN)221342672 035 $a(Perlego)1000657 035 $a(Perlego)2786737 035 $a(EXLCZ)992550000001111823 100 $a20130322d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aTrace analysis of specialty and electronic gases /$fedited by William M. Geiger, Mark W. Raynor 205 $a1st ed. 210 $aHoboken, N.J. $cJohn Wiley & Sons, Inc.$d2013 215 $a1 online resource (387 p.) 300 $aDescription based upon print version of record. 311 08$a9781118065662 311 08$a1118065662 311 08$a9781299804647 311 08$a1299804640 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; CONTENTS; List of Figures; List of Tables; Foreword; Acknowledgments; Acronyms; 1 Introduction to Gas Analysis: Past and Future; 1.1 The Beginning; 1.2 Gas Chromatography; 1.3 Ion Chromatography; 1.4 Mass Spectrometry; 1.5 Ion Mobility Spectrometry; 1.6 Optical Spectroscopy; 1.7 Metals Analysis; 1.8 Species-Specific Analyzers; 1.8.1 Oxygen Analyzers; 1.8.2 Paramagnetic Analyzers; 1.8.3 Moisture Analyzers; 1.9 Sensors; 1.10 The Future; References; 2 Sample Preparation and ICP-MS Analysis of Gases for Metals; 2.1 Introduction 327 $a2.2 Extraction of Impurities Before Analysis2.2.1 Filtration Method; 2.2.2 Hydrolysis Method; 2.2.3 Residue Method; 2.2.4 Choice of Sampling Method; 2.2.5 ICP-MS Analysis; 2.3 Direct Analysis of ESGs; 2.3.1 Calibration; 2.3.2 Analysis of Carbon Monoxide; 2.4 Conclusions; References; 3 Novel Improvements in FTIR Analysis of Specialty Gases; 3.1 Gas-Phase Analysis Using FTIR Spectroscopy; 3.2 Gas-Phase Effects on Spectral Line Shape; 3.2.1 External Effects on Line Shapes; 3.2.2 Matrix Gas Effects on Line Shapes; 3.3 Factors That Greatly Affect Quantification; 3.3.1 Isotope Abundance Ratios 327 $a3.3.2 Hydrogen Bonding3.3.3 Alternative Background Removal Strategies; 3.3.4 Automatic Region Selection for CLS Methods; 3.4 Future Applications; References; 4 Emerging Infrared Laser Absorption Spectroscopic Techniques for Gas Analysis; 4.1 Introduction; 4.2 Laser Absorption Spectroscopic Techniques; 4.2.1 Quantum and Interband Cascade Lasers; 4.2.2 Cavity-Enhanced Spectroscopy: CRDS and ICOS; 4.2.3 Conventional and Quartz-Enhanced Photoacoustic Spectroscopy; 4.2.4 Cavity-Enhanced Direct Frequency-Comb Spectroscopy; 4.3 Applications of Semiconductor LAS-Based Trace Gas Sensor Systems 327 $a4.3.1 OA-ICOS Online Measurement of Acetylene in an Industrial Hydrogenation Reactor4.3.2 Multicomponent Impurity Analysis in Hydrogen Process Gas Using a Compact QEPAS Sensor; 4.3.3 Analysis of Trace Impurities in Arsine by CE-DFCS at 1.75 to 1.95 mm; 4.4 Conclusions and Future Trends; References; 5 Atmospheric Pressure lonization Mass Spectrometry for Bulk and Electronic Gas Analysis; 5.1 Introduction; 5.2 APIMS Operating Principle; 5.3 Point-to-Plane Corona Discharge lonization; 5.4 Factors Affecting Sensitivity in Point-to-Plane Corona Discharge APIMS; 5.4.1 Effects of Pressure 327 $a5.4.2 Effects of Declustering Lens Voltage5.4.3 Effects of Coexisting Analytes; 5.4.4 Isotopic Dilution APIMS Measurements; 5.5 Applications of Point-to-Plane Corona Discharge APIMS; 5.5.1 Bulk Gas Analysis; 5.5.2 Electronic Specialty Gas Analysis; 5.6 Nickel-63 Beta Emitter APIMS; 5.6.1 Nickel-63 Source Design; 5.6.2 Ion Formation from a Nickel-63 Source; 5.6.3 Importance of the Declustering Region for Nickel-63 Sources; 5.6.4 Overcoming Competing Positive-Ion Proton Affinities; 5.6.5 Negative-Ion Cluster Formation 327 $a5.7 Specialty Gas Analysis Application: Determination of Oxygenated Impurities in High-Purity Ammonia 330 $a Explores the latest advances and applications of specialty and electronic gas analysis The semiconductor industry depends upon a broad range of instrumental techniques in order to detect and analyze impurities that may be present in specialty and electronic gases, including permanent gases, water vapor, reaction by-products, and metal species. Trace Analysis of Specialty and Electronic Gases draws together all the latest advances in analytical chemistry, providing researchers with both the theory and the operating principles of the full spectrum of instrumental technique 606 $aGases$xAnalysis 606 $aTrace elements$xAnalysis 606 $aGases$xSpectra 615 0$aGases$xAnalysis. 615 0$aTrace elements$xAnalysis. 615 0$aGases$xSpectra. 676 $a543 701 $aGeiger$b William M.$f1948-$01721188 701 $aRaynor$b Mark W.$f1961-$01721189 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826057803321 996 $aTrace analysis of specialty and electronic gases$94120499 997 $aUNINA