LEADER 07550nam 2200601 a 450 001 9910825973303321 005 20240410172538.0 010 $a1-62100-541-0 035 $a(CKB)2550000001043274 035 $a(EBL)3021346 035 $a(SSID)ssj0000875364 035 $a(PQKBManifestationID)12358975 035 $a(PQKBTitleCode)TC0000875364 035 $a(PQKBWorkID)10890174 035 $a(PQKB)10430577 035 $a(MiAaPQ)EBC3021346 035 $a(Au-PeEL)EBL3021346 035 $a(CaPaEBR)ebr10683004 035 $a(OCoLC)841509772 035 $a(EXLCZ)992550000001043274 100 $a20111007d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aLight-emitting diodes and optoelectronics$b[electronic resource] $enew research /$fJoshua T. Hall and Anton O. Koskinen, editors 205 $a1st ed. 210 $aHauppauge, N.Y. $cNova Science Publishers, Inc.$dc2012 215 $a1 online resource (307 p.) 225 1 $aElectrical engineering developments 300 $aDescription based upon print version of record. 311 $a1-62100-448-1 320 $aIncludes bibliographical references and index. 327 $aIntro -- LIGHT-EMITTING DIODES AND OPTOELECTRONICS -- LIGHT-EMITTING DIODES AND OPTOELECTRONICS -- CONTENTS -- PREFACE -- APPROACHES FOR FABRICATING HIGH EFFICIENCY ORGANIC LIGHT EMITTING DIODE FOR FLAT PANEL DISPLAY AND SOLID STATE LIGHTING: AN OVERVIEW -- ABSTRACT -- 1. INTRODUCTION -- 2. APPROACHES FOR HIGHLY EFFICIENT DEVICES -- 2.1. Device Structure -- 2.1.1. Low Carrier Injection Barrier -- 2.1.2. Effective Carrier Confinement -- 2.1.3. Effective Excitons Generation on Host -- 2.1.4. Effective Host-Guest Energy Transfer -- 2.1.5. Balanced Carrier Injection -- 2.1.6. Carrier Modulation Layer -- 2.1.7. Polymeric Nanodots (PNDs) -- 2.2. Light Outcoupling -- 2.2.1. Substrate Surface Modifications -- 2.2.2. Texturing Mesh Surfaces -- 2.2.3. Multilayer Cathode Structures -- 2.2.4. Aperiodic Dielectric Stacks -- 2.2.5. Microlens Arrays -- 2.2.6. Low Index Grids -- 2.2.7. Effect of Micro-cavities -- 2.2.8. Surface Plasmons -- 2.2.9. Photonic Crystal -- 2.2.10. Effect of Nano Porous Films, Nano Wires, Nano Particles and Nano Pillars -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- RELIABILITY ESTIMATION FROM THE JUNCTION TO THE PACKAGING OF LED -- I. CONTEXT AND OBJECTIVES -- II. STATE OF ART OF THE LED MODULE -- III. MODEL OF THE LED MODULE -- 1. Thermal Simulation -- 2. Optical Models -- a. Optical Power Characterizations -- b. Spectral Characterizations -- 3. Electrical Model -- IV. FAILURE ANALYSES -- 1. Ageing Test Conditions - Active Storage -- 2. Analysis of Recombination Current Drift -- a)Failure Mechanism Diagnostic Using Electrical Characterizations -- b. Failure Mechanism Diagnostic Using Optical Characterizations -- 3. Analyses of Leakage Current -- V. RELIABILITY ESTIMATION -- 1. Relation between Degradation Law and Lifetime Estimation -- 2. Reliability Investigations Using Technological Dispersion -- CONCLUSION -- REFERENCES. 327 $aTHE NEXT-GENERATION INTELLIGENT AND GREEN ENERGY LED BACKLIGHTING 3D DISPLAY TECHNOLOGY FOR THE NAKED EYE -- ABSTRACT -- 1. INTRODUCTION -- Intelligent and Green Energy LED Backlighting Techniques -- 2. 3D DISPLAY BACKLIGHT AND APPLICATION -- 2.1. Localized 2D/3D Switchable Maked-eye 3D Display -- 2.2. Mult-view Time Multiplexed Autostereoscopic Displays -- 2.3. Multi-Viewer Tracking Stereoscopic Display -- 3. EXPERIMENTAL AND RESULTS -- 3.1. Localized 2D/3D Switchable Maked-eye 3D Display -- 3.1.1. Three Dimensional Data Registration LED Backlight -- 3.1.2. Localized 2D/3D Switchable Naked-eye 3D Display -- 3.3. Mult-View Time Multiplexed Autostereoscopic Displays -- 3.3.1. Experimental Results -- 3.4. Multi-viewer Tracking Stereoscopic Display -- (B) LED Backlight Architecture -- 3.4.1. Crosstalk Analysis -- 3.4.2. Measured Results -- (A) The Optical Properties Measurement -- (B) Motion Parallax Function Result -- CONCLUSION -- REFERENCES -- INTERSUBBAND TRANSITION IN CDS/ZNSE QUANTUM WELLS FOR EMISSION AND INFRARED PHOTO DETECTION -- ABSTRACT -- INTRODUCTION -- THEORY -- MODELLING AND SIMULATION OF DEVICES -- 1. Electronic Properties of ISBT for Fiber Optic Emissions (1.33?1.55 ?m) -- 2. ABSORPTION COEFFICIENT OF ISBT AT 1.55µM IN (CDS/ZNSE)/BETE QUANTUM WELLS -- 3. ELECTRO-OPTIC PERFORMANCE OF (CDS/ZNSE)/BETE BASED QUANTUM WELL INFRARED PHOTODETECTOR -- CONCLUSION -- REFERENCES -- INORGANIC-ORGANIC HYBRID EMITTING MATERIAL FABRICATED BY SOLVOTHERMAL SYNTHESIS -- ABSTRACT -- 1. INTRODUCTION -- 2. PRINCIPLE AND PROBLEM OF EUROPIUM-COMPLEX -- 3. SOL-GEL PROCESS TO ENCAPSULATE EUROPIUM-COMPLEX -- 4. SILICA GLASS COATED EUROPIUM-COMPLEX BY SOLVOTHERMAL PROCESS -- 4.1. Principle of Solvothemal Process -- 4.2. Fabrication Process and Measurement -- 4.3. Dependence of Silane Alxoxide -- 4.4. Dependence of Organic Solvent -- CONCLUSION. 327 $aACKNOWLEDGMENTS -- REFERENCES -- ENHANCED EFFICIENCY OF ZNTE-BASED GREEN LIGHT-EMITTING DIODES -- ABSTRACT -- INTRODUCTION -- PROPERTIES OF ZNTE LED FABRICATED BY THERMAL DIFFUSION OF AL THROUGH A SURFACE OXIDATION LAYER -- IMPROVED LED PERFORMANCE BY USING AL OXIDE LAYER AS A DIFFUSION LIMITING LAYER -- ENHANCED OUTPUT POWER OF ZNTE LED BY ADAPTING THIN FILM STRUCTURE -- CONCLUSION -- REFERENCES -- SELF-INTRODUCED LATTICE DISTORTION, INVISIBLE CAVITY AND HIDDEN COLLECTIVE BEHAVIOR OF A POLYMERIC NANOFIBER LASER -- ABSTRACT -- I. INTRODUCTION -- II. MODEL -- III. RESULTS AND DISCUSSION -- REFERENCES -- PHOTONIC BANDGAP DEFECT STRUCTURE ON IV-VI SEMICONDUCTOR: RESONATING CAVITY WITHOUT CLEAVING -- 1.1. BACKGROUND -- 1.2. INTRODUCTION -- 1.3. FINITE DIFFERENCE TIME DOMAIN (FDTD) METHOD -- 1.4. TWO DIMENSIONAL FDTD EQUATIONS -- 1.4.1. TE Waves -- 1.4.2. TM Waves -- 1.5. PLANE WAVE EXPANSION (PWE) METHOD -- 1.6. FINITE DIFFERENCE METHOD (FDM) -- 1.7. LEAD CHALCOGENIDE DEFECT CAVITY PBG STRUCTURE -- 1.7.1. Mid Infrared Photonic Bandgap Formation -- 1.7.2. Modal Analysis by FDM Scheme -- 1.7.3. Modal Analysis by FDTD Scheme -- 1.8. EXPERIMENTAL STEPS FOR AIR HOLE FORMATION -- CONCLUSION -- REFERENCES -- MODELLING OF WIDEBANDGAP LIGHT EMITTING DIODES: FROM HETEROSTRUCTURE TO LED LAMP -- Abstract -- 1.Introduction -- 2.CarrierInjectionandLightEmissioninLEDHeterostruc-tures -- 2.1.LEDdiestructure -- 2.1.1.Strainandpiezoeffect -- 2.1.2.Electron,holeandimpuritystatistics -- 2.2.Carrierstransport -- 2.2.1.Recombinationofnon-equilibriumchargecarriers -- 2.3.Lightemissionspectra -- 2.4.Examples -- 3.CurrentSpreadinginLEDDieandLightExtraction -- 3.1.HybridapproachtoLEDdiemodeling -- 3.2.CurrentcrowdinginLEDdie -- 3.3.HeattransferinLEDdie -- 3.4.LightextractionfromLEDdie -- 3.4.1."Lightescape"problem -- 3.4.2.ApproachestoLEEenhancement. 327 $a3.5.Currentcrowdingeffectonlightextractionefficiency -- 4.ModelingofLEDLamps -- 5.Conclusion -- Acknowledgments -- References -- INDEX. 410 0$aElectrical engineering developments series. 606 $aLight emitting diodes 606 $aOptoelectronic devices 615 0$aLight emitting diodes. 615 0$aOptoelectronic devices. 676 $a621.3815/22 701 $aHall$b Joshua T$01636998 701 $aKoskinen$b Anton O$01636999 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910825973303321 996 $aLight-emitting diodes and optoelectronics$93978564 997 $aUNINA