LEADER 03294nam 2200601 450 001 9910825809203321 005 20220902074731.0 010 $a0-8218-7799-2 010 $a0-8218-5544-1 035 $a(CKB)3240000000069737 035 $a(EBL)3112901 035 $a(SSID)ssj0000712528 035 $a(PQKBManifestationID)11416694 035 $a(PQKBTitleCode)TC0000712528 035 $a(PQKBWorkID)10644430 035 $a(PQKB)11407870 035 $a(MiAaPQ)EBC3112901 035 $a(WaSeSS)Ind00039295 035 $a(RPAM)4488073 035 $a(PPN)197105351 035 $a(EXLCZ)993240000000069737 100 $a19970325h19971997 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aHarmonic analysis and nonlinear differential equations $ea volume in honor of Victor L. Shapiro : November 3-5, 1995, University of California, Riverside /$fMichel L. Lapidus, coordinating editor ; Lawrence H. Harper, Adolfo J. Rumbos, editors 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1997] 210 4$dİ1997 215 $a1 online resource (366 p.) 225 1 $aContemporary mathematics,$x0271-4132 ;$v208 300 $aPapers presented at a conference held in conjunction with the fall meeting of the Southern California analysis and partial differential equations conference, Nov. 3-5, 1995. 311 $a0-8218-0565-7 320 $aIncludes bibliographical references. 327 $aTable of Contents -- Dedication -- Preface -- From Reaction-Diffusion to Spherical Harmonics -- A Survey of Uniqueness Questions in Multiple Trigonometric Series -- A New Look at Some Old Trigonometric Expansions -- Analysis Results and Problems Related to Lattice Points on Surfaces -- A Semilinear Wave Equation with Derivative of Nonlinearity Containing Multiple Eigenvalues of Infinite Multiplicity -- The Structure of the Solutions to Semilinear Equations at a Critical Exponent -- What Do the Navier-Stokes Equations Tell Us about Turbulence? -- A Reminiscence and Survey of Solutions to a JPL Coding Problem -- Weak Limit Sets of Differential Equations -- Towards a Noncommutative Fractal Geometry? Laplacians and Volume Measures on Fractals -- Some Remarks on Global Nonexistence for Nonautonomous Abstract Evolution Equations -- Cartwright and Littlewood on Van der Pol's Equation -- One-Sided Resonance for a Quasilinear Variational Problem -- Shock-Waves in General Relativity -- Dyadic Harmonic Analysis. 410 0$aContemporary mathematics (American Mathematical Society).$v208$x0271-4132 606 $aHarmonic analysis$vCongresses 606 $aDifferential equations, Nonlinear$vCongresses 615 0$aHarmonic analysis 615 0$aDifferential equations, Nonlinear 676 $a515/.2433 702 $aShapiro$b Victor L$g(Victor Lenard),$f1924-2013 702 $aLapidus$b Michel L$g(Michel Laurent),$f1956- 702 $aHarper$b Lawrence H$g(Lawrence Hueston),$f1938- 702 $aRumbos$b Adolfo J.$f1962- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910825809203321 996 $aHARMONIC analysis and nonlinear differential equations$9337026 997 $aUNINA