LEADER 05878nam 2200793 a 450 001 9910825750203321 005 20230725052625.0 010 $a1-283-43328-1 010 $a9786613433282 010 $a981-283-765-5 035 $a(CKB)3400000000016548 035 $a(EBL)840641 035 $a(OCoLC)778434566 035 $a(SSID)ssj0000647702 035 $a(PQKBManifestationID)12234280 035 $a(PQKBTitleCode)TC0000647702 035 $a(PQKBWorkID)10593806 035 $a(PQKB)10421459 035 $a(MiAaPQ)EBC840641 035 $a(WSP)00007138 035 $a(Au-PeEL)EBL840641 035 $a(CaPaEBR)ebr10524573 035 $a(CaONFJC)MIL343328 035 $a(EXLCZ)993400000000016548 100 $a20110929d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aSpectroscopy, dynamics and molecular theory of carbon plasmas and vapors$b[electronic resource] $eadvances in the understanding of the most complex high-temperature elemental system /$feditors, La?szlo? Nemes, Stephan Irle ; foreword by Harold Kroto 210 $aSingapore ;$aLondon $cWorld Scientific$d2011 215 $a1 online resource (536 p.) 300 $aDescription based upon print version of record. 311 $a981-283-764-7 320 $aIncludes bibliographical references and index. 327 $aForeword; Preface; Contents; Experimental; Chapter 1 Spectroscopy of Carbon Nanotube Production Processes; 1. Introduction; 2. Arc Discharge; 3. Laser Plumes; 4. Glow Discharge; 5. Flames; 6. Conclusions; References; Chapter 2 Spectroscopic Studies on Laser-Produced Carbon Vapor; 1. Introduction; 2. Experimental Apparatus; 2.1. Laser ablation system; 2.2. Optical emission spectroscopy; 2.3. Laser-induced fluorescence imaging spectroscopy; 3. Optical Emission from Laser-Produced Carbon Vapor [Sasaki et al. (2002)]; 3.1. Temporal variation of optical emission intensity 327 $a3.2. Optical emission spectrum3.3. Spatial distribution of delayed continuum emission; 4. Spatiotemporal Variations of C2 and C3 Radical Densities [Sasaki et al. (2002)]; 4.1. C2 and C3 radical densities in vacuum; 4.2. C2 and C3 radical densities in ambient He gas at 1 Torr; 4.3. C2 and C3 radical densities in ambient He gas at 5 Torr; 5. Temporal Change in the Total Numbers of C2 and C3; 6. Spatiotemporal Variation of Plume Temperature [Sasaki and Aoki (2008)]; 6.1. Evaluation of plume temperature; 6.2. Spatial distribution of plume temperature; 6.3. Temporal variation of plume temperature 327 $a7. A Scenario for the Growth of Carbon Clusters8. Conclusions; References; Chapter 3 Kinetic and Diagnostic Studies of Carbon Containing Plasmas and Vapors Using Laser Absorption Techniques; 1. Introduction; 2. Plasma Chemistry and Reaction Kinetics; 2.1. General considerations; 2.2. Molecular microwave plasmas containing hydrocarbons; 3. Gas-Phase Characterization in Diamond Hot-Filament CVD; 4. Kinetic Studies and Molecular Spectroscopy of Radicals; 4.1. Line strengths and transition dipole moment of CH3; 4.2. Molecular spectroscopy of the CN radical 327 $a5. Quantum Cascade Laser Absorption Spectroscopy for Plasmas Diagnostics and Control5.1. General considerations; 5.2. Trace gas measurements using optically resonant cavities; 5.3. In situ monitoring of plasma etch processes with a QCL arrangement in semiconductor industrial environment; 6. Summary and Conclusions; Acknowledgements; References; Chapter 4 Spectroscopy of Carbon Containing Diatomic Molecules; 1. Introduction; 1.1. Differences between atomic and diatomic spectra; 1.2. The line strength; 2. Diatomic Quantum Theory; 2.1. Diatomic eigenfunctions; 2.2. Diatomic parity 327 $a2.3. Homonuclear diatomics2.4. Born-Oppenheimer approximation; 2.5. Hund's angular momentum coupling cases; 3. The Diatomic Hamiltonian; 3.1. The rotational Hamiltonian; 3.2. The fine structure Hamiltonian; 3.3. Hamiltonian matrix elements in Hund's case (a); 3.4. Centrifugal corrections to molecular parameters; 4. Finding the Molecular Parameters by Fitting a Measured Spectrum; 4.1. Example of a spectrum fit; 5. Diatomic Line Strengths in the Case (a) Basis; 5.1. RKR potentials and vibrational eigenfunctions; 5.2. Computation of the diatomic line strength 327 $a6. Example Applications of Line Strengths 330 $aThis book is a stop-gap contribution to the science and technology of carbon plasmas and carbon vapors. It strives to cover two strongly related fields: the molecular quantum theory of carbon plasmas and carbon nanostructures; and the molecular and atomic spectroscopy of such plasmas and vapors. These two fields of research are strongly intertwined and thus reinforce one another. Even though the use of carbon nanostructures is increasing by the day and their practical uses are emerging, there is no modern review on carbon plasmas, especially from molecular theoretical and spectroscopic viewpoi 606 $aPlasma (Ionized gases) 606 $aNanostructured materials 606 $aVapors 606 $aCarbon 606 $aQuantum theory 606 $aMolecular spectroscopy 606 $aAtomic spectroscopy 615 0$aPlasma (Ionized gases) 615 0$aNanostructured materials. 615 0$aVapors. 615 0$aCarbon. 615 0$aQuantum theory. 615 0$aMolecular spectroscopy. 615 0$aAtomic spectroscopy. 676 $a530.443 676 $a541.28 701 $aNemes$b L$01709366 701 $aIrle$b Stephan$01709367 701 $aKroto$b Harold$0479671 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910825750203321 996 $aSpectroscopy, dynamics and molecular theory of carbon plasmas and vapors$94099075 997 $aUNINA