LEADER 10387nam 2200709 450 001 9910825494003321 005 20230125205218.0 010 $a1-118-36850-9 010 $a1-118-36848-7 010 $a1-118-36849-5 024 7 $a10.1002/9781118368480 035 $a(CKB)2550000001114512 035 $a(EBL)1366274 035 $a(SSID)ssj0000981925 035 $a(PQKBManifestationID)11505181 035 $a(PQKBTitleCode)TC0000981925 035 $a(PQKBWorkID)10983976 035 $a(PQKB)11251123 035 $a(CaBNVSL)mat08039805 035 $a(IDAMS)0b00006485f0dbb1 035 $a(IEEE)8039805 035 $a(DLC) 2013029832 035 $a(Au-PeEL)EBL1366274 035 $a(CaPaEBR)ebr10753388 035 $a(CaONFJC)MIL514364 035 $a(MiAaPQ)EBC1366274 035 $a(OCoLC)854285811 035 $a(PPN)251066738 035 $a(EXLCZ)992550000001114512 100 $a20171024d2008 uy 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSound visualization and manipulation /$fYang-Hann Kim and Jung-Woo Choi, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea 210 1$aSingapore :$cWiley,$d2013. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2013] 215 $a1 online resource (438 p.) 300 $aDescription based upon print version of record. 311 $a1-118-36847-9 311 $a1-299-83113-3 320 $aIncludes bibliographical references and index. 327 $aAbout the Author xi -- Preface xiii -- Acknowledgments xvii -- Part I ESSENCE OF ACOUSTICS -- 1 Acoustic Wave Equation and Its Basic Physical Measures 3 -- 1.1 Introduction 3 -- 1.2 One-Dimensional Acoustic Wave Equation 3 -- 1.2.1 Impedance 9 -- 1.3 Three-Dimensional Wave Equation 10 -- 1.4 Acoustic Intensity and Energy 11 -- 1.4.1 Complex-Valued Pressure and Intensity 16 -- 1.5 The Units of Sound 18 -- 1.6 Analysis Methods of Linear Acoustic Wave Equation 27 -- 1.6.1 Acoustic Wave Equation and Boundary Condition 28 -- 1.6.2 Eigenfunctions and Modal Expansion Theory 31 -- 1.6.3 Integral Approach Using Green's Function 35 -- 1.7 Solutions of the Wave Equation 39 -- 1.7.1 Plane Wave 40 -- 1.7.2 Spherical Wave 41 -- 1.8 Chapter Summary 46 -- References 46 -- 2 Radiation, Scattering, and Diffraction 49 -- 2.1 Introduction/Study Objectives 49 -- 2.2 Radiation of a Breathing Sphere and a Trembling Sphere 50 -- 2.3 Radiation from a Baffled Piston 58 -- 2.4 Radiation from a Finite Vibrating Plate 65 -- 2.5 Diffraction and Scattering 70 -- 2.6 Chapter Summary 79 -- 2.7 Essentials of Radiation, Scattering, and Diffraction 80 -- 2.7.1 Radiated Sound Field from an Infinitely Baffled Circular Piston 80 -- 2.7.2 Sound Field at an Arbitrary Position Radiated by an Infinitely Baffled Circular Piston 81 -- 2.7.3 Understanding Radiation, Scattering, and Diffraction Using the Kirchhoff / Helmholtz Integral Equation 82 -- 2.7.4 Scattered Sound Field Using the Rayleigh Integral Equation 96 -- References 97 -- Part II SOUND VISUALIZATION -- 3 Acoustic Holography 103 -- 3.1 Introduction 103 -- 3.2 The Methodology of Acoustic Source Identification 103 -- 3.3 Acoustic Holography: Measurement, Prediction, and Analysis 106 -- 3.3.1 Introduction and Problem Definitions 106 -- 3.3.2 Prediction Process 107 -- 3.3.3 Mathematical Derivations of Three Acoustic Holography Methods and Their Discrete Forms 113 -- 3.3.4 Measurement 119 -- 3.3.5 Analysis of Acoustic Holography 124 -- 3.4 Summary 129 -- References 130. 327 $a4 Beamforming 137 -- 4.1 Introduction 137 -- 4.2 Problem Statement 138 -- 4.3 Model-Based Beamforming 140 -- 4.3.1 Plane and Spherical Wave Beamforming 140 -- 4.3.2 The Array Configuration 142 -- 4.4 Signal-Based Beamforming 145 -- 4.4.1 Construction of Correlation Matrix in Time Domain 146 -- 4.4.2 Construction of Correlation Matrix in Frequency Domain 151 -- 4.4.3 Correlation Matrix of Multiple Sound Sources 152 -- 4.5 Correlation-Based Scan Vector Design 160 -- 4.5.1 Minimum Variance Beamformer 160 -- 4.5.2 Linear Prediction 164 -- 4.6 Subspace-Based Approaches 170 -- 4.6.1 Basic Principles 170 -- 4.6.2 MUSIC Beamformer 173 -- 4.6.3 ESPRIT 180 -- 4.7 Wideband Processing Technique 182 -- 4.7.1 Frequency-Domain Approach: Mapping to the Beam Space 182 -- 4.7.2 Coherent Subspace Method (CSM) 184 -- 4.7.3 Partial Field Decomposition in Beam Space 185 -- 4.7.4 Time-Domain Technique 190 -- 4.7.5 Moving-Source Localization 198 -- 4.8 Post-Processing Techniques 204 -- 4.8.1 Deconvolution and Beamforming 204 -- 4.8.2 Nonnegativity Constraint 207 -- 4.8.3 Nonnegative Least-Squares Algorithm 209 -- 4.8.4 DAMAS 210 -- References 212 -- Part III SOUND MANIPULATION -- 5 Sound Focusing 219 -- 5.1 Introduction 219 -- 5.2 Descriptions of the Problem of Sound Focusing 221 -- 5.2.1 Free-Field Radiation from Loudspeaker Arrays 221 -- 5.2.2 Descriptions of a Sound Field Depending on the Distance from the Array 221 -- 5.2.3 Fresnel Approximation 223 -- 5.2.4 Farfield Description of the Rayleigh Integral (Fraunhofer Approximation) 225 -- 5.2.5 Descriptors of Directivity 227 -- 5.3 Summing Operator (+) 230 -- 5.3.1 Delay-and-Sum Technique 230 -- 5.3.2 Beam Shaping and Steering 231 -- 5.3.3 Wavenumber Cone and Diffraction Limit 233 -- 5.3.4 Frequency Invariant Radiation Pattern 236 -- 5.3.5 Discrete Array and Grating Lobes 237 -- 5.4 Product Theorem (x) 240 -- 5.4.1 Convolution and Multiplication of Sound Beams 240 -- 5.4.2 On-Axis Pressure Response 243 -- 5.5 Differential Operator and Super-Directivity (-) 245. 327 $a5.5.1 Endfire Differential Patterns 245 -- 5.5.2 Combination of Delay-and-Sum and Endfire Differential Patterns 252 -- 5.5.3 Broadside Differential Pattern 252 -- 5.5.4 Combination of the Delay-and-Sum and Broadside Differential Patterns 258 -- 5.6 Optimization with Energy Ratios (÷) 259 -- 5.6.1 Problem Statement 259 -- 5.6.2 Capon's Minimum Variance Estimator (Minimum Variance Beamformer) 261 -- 5.6.3 Acoustic Brightness and Contrast Control 262 -- 5.6.4 Further Analysis of Acoustic Brightness and Contrast Control 273 -- 5.6.5 Application Examples 276 -- References 280 -- 6 Sound Field Reproduction 283 -- 6.1 Introduction 283 -- 6.2 Problem Statement 284 -- 6.2.1 Concept of Sound Field Reproduction 284 -- 6.2.2 Objective of Sound Field Reproduction 284 -- 6.3 Reproduction of One-Dimensional Sound Field 286 -- 6.3.1 Field-Matching Approach 286 -- 6.3.2 Mode-Matching Approach 288 -- 6.3.3 Integral Approach 289 -- 6.3.4 Single-Layer Potential 295 -- 6.4 Reproduction of a 3D Sound Field 296 -- 6.4.1 Problem Statement and Associated Variables 296 -- 6.5 Field-Matching Approach 298 -- 6.5.1 Inverse Problem 298 -- 6.5.2 Regularization of an Inverse Problem 305 -- 6.5.3 Selection of the Regularization Parameter 309 -- 6.6 Mode-Matching Approach 311 -- 6.6.1 Encoding and Decoding of Sound Field 311 -- 6.6.2 Mode-Matching with Plane Waves 313 -- 6.6.3 Mode-Matching with Spherical Harmonics 320 -- 6.7 Surface Integral Equations 337 -- 6.7.1 Source Inside, Listener Inside (V0 ⊂ V , r ∈ V ) 337 -- 6.7.2 Source Inside, Listener Outside (V0 ⊂ V , r ∈ ) 340 -- 6.7.3 Source Outside, Listener Outside (V0 ⊂ , r ∈ ) 341 -- 6.7.4 Source Outside, Listener Inside (V0 ⊂ , r ∈ V ) 342 -- 6.7.5 Listener on the Control Surface 342 -- 6.7.6 Summary of Integral Equations 344 -- 6.7.7 Nonradiating Sound Field and Nonuniqueness Problem 344 -- 6.8 Single-layer Formula 346 -- 6.8.1 Single-layer Formula for Exterior Virtual Source 346 -- 6.8.2 Integral Formulas for Interior Virtual Source 355 -- References 369. 327 $aAppendix A Useful Formulas 371 -- A.1 Fourier Transform 371 -- A.1.1 Fourier Transform Table 371 -- A.2 Dirac Delta Function 374 -- A.3 Derivative of Matrices 374 -- A.3.1 Derivative of Real-Valued Matrix 374 -- A.3.2 Derivative of Complex-Valued Function 375 -- A.3.3 Derivative of Complex Matrix 376 -- A.4 Inverse Problem 376 -- A.4.1 Overdetermined Linear Equations and Least Squares (LS) Solution 377 -- A.4.2 Underdetermined Linear Equations and Minimum-Norm Problem 378 -- A.4.3 Method of Lagrange Multiplier 379 -- A.4.4 Regularized Least Squares 380 -- A.4.5 Singular Value Decomposition 380 -- A.4.6 Total Least Squares (TLS) 382 -- Appendix B Description of Sound Field 385 -- B.1 Three-Dimensional Acoustic Wave Equation 385 -- B.1.1 Conservation of Mass 385 -- B.1.2 Conservation of Momentum 385 -- B.1.3 Equation of State 388 -- B.1.4 Velocity Potential Function 390 -- B.1.5 Complex Intensity 391 -- B.1.6 Singular Sources 392 -- B.2 Wavenumber Domain Representation of the Rayleigh Integral 398 -- B.2.1 Fourier Transform of Free-Field Green's Function (Weyl's Identity) 398 -- B.2.2 High Frequency Approximation (Stationary Phase Approximation) 399 -- B.3 Separation of Variables in Spherical Coordinates 400 -- B.3.1 Angle Functions: Associated Legendre Functions 400 -- B.3.2 Angle Functions: Spherical Harmonics 402 -- B.3.3 Radial Functions 404 -- B.3.4 Radial Functions: Spherical Bessel and Hankel Functions 404 -- B.3.5 Description of Sound Fields by Spherical Basis Function 408 -- B.3.6 Representation of the Green's Function 409 -- References 411 -- Index 413. 330 $a Unique in addressing two different problems - sound visualization and manipulation - in a unified way Advances in signal processing technology are enabling ever more accurate visualization of existing sound fields and precisely defined sound field production. The idea of explaining both the problem of sound visualization and the problem of the manipulation of sound within one book supports this inter-related area of study. With rapid development of array technologies, it is possible to do much in terms of visualization and manipulation, among other technologies involved 606 $aSound-waves$xMathematical models 606 $aHelmholtz equation 615 0$aSound-waves$xMathematical models. 615 0$aHelmholtz equation. 676 $a534.01/5153533 700 $aKim$b Yang-Hann$0619880 701 $aChoi$b Jung-Woo$01600550 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910825494003321 996 $aSound visualization and manipulation$93923689 997 $aUNINA LEADER 04328nam 22005655 450 001 9911011654903321 005 20250619125403.0 010 $a981-9787-23-8 024 7 $a10.1007/978-981-97-8723-4 035 $a(MiAaPQ)EBC32162768 035 $a(Au-PeEL)EBL32162768 035 $a(CKB)39395894400041 035 $a(DE-He213)978-981-97-8723-4 035 $a(EXLCZ)9939395894400041 100 $a20250619d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTheories and Application in Maize-Soybean Strip Intercropping System /$fedited by Wenyu Yang, Feng Yang, Yushan Wu 205 $a1st ed. 2025. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2025. 215 $a1 online resource (675 pages) 311 08$a981-9787-22-X 327 $aChapter 1 Challenges faced by grain production in China and advantages of intercropping -- Chapter 2 -- The connotation and research protocol of maize-soybean strip intercropping -- Chapter 3 Theory of efficient use of light and water resources in maize-soybean strip intercropping -- Chapter 4 Theory of efficient nutrient utilization in maize-soybean strip intercropping -- Chapter 5 -- Theory of soybean canopy architecture regulation in maize-soybean strip intercropping -- Chapter 6 -- Crop quality formation and its environmental regulation in maize-soybean strip intercropping -- Chapter 7 Patterns of pest, disease, and weed incidence in strip intercropping systems -- Chapter 8 Core technologies to fulfill the sustainable productive potential of maize-soybean strip intercropping systems -- Chapter 9 -- Supporting technologies to ensure high productivity and sustainability in maize-soybean strip intercropping -- Chapter 10 -- Sowing and fertilizing machine in maize-soybean strip intercropping -- Chapter 11Plant protection equipment in maize-soybean strip intercropping system -- Chapter 12 -- Harvesting machinery in maize-soybean strip intercropping system -- Chapter 13 Regional adaptation of the best suited technology model according to resources availability and specific regional ecological conditions -- Chapter 14 Mechanisms for promoting the achievements from research and technological development for strip intercropping systems -- Chapter 15 Effects of the application and future prospects for maize-soybean strip intercropping. 330 $aThis book provides comprehensive coverage of the advances in theoretical and technical research on the maize-soybean strip intercropping system. Intercropping plays an important role in producing more yields for those countries with a large population and limited arable land, especially for cereal and legume intercropping systems. Maize and soybean are best partners under cereal and legume intercropping conditions. The chapters feature the latest developments in intercropping research and cover such topics as the mechanism of resource-efficient utilization, determination of the optimum planting geometry for maize?soybean strip intercropping system according to the yield advantage, and the application of agricultural machinery for intercropping mechanization. The volume also features the response of intercrops to a light environment based on the methods of physiological and molecular biology, laying the groundwork for future advances in variety breeding and crop field configuration. This book will serve as an invaluable reference for agricultural production, teaching, and research of the cropping system in the future. 606 $aAgriculture 606 $aPlant physiology 606 $aPlant ecology 606 $aAgriculture 606 $aPlant Physiology 606 $aPlant Ecology 615 0$aAgriculture. 615 0$aPlant physiology. 615 0$aPlant ecology. 615 14$aAgriculture. 615 24$aPlant Physiology. 615 24$aPlant Ecology. 676 $a631.58 700 $aYang$b Wenyu$01830271 701 $aYang$b Feng$0871967 701 $aWu$b Yushan$0252616 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911011654903321 996 $aTheories and Application in Maize-Soybean Strip Intercropping System$94400568 997 $aUNINA