LEADER 05509nam 2200745 450 001 9910825338703321 005 20200520144314.0 010 $a3-527-66560-9 010 $a3-527-66558-7 010 $a3-527-66561-7 035 $a(CKB)2550000001180235 035 $a(EBL)1585291 035 $a(SSID)ssj0001126132 035 $a(PQKBManifestationID)11639413 035 $a(PQKBTitleCode)TC0001126132 035 $a(PQKBWorkID)11134273 035 $a(PQKB)11115095 035 $a(OCoLC)874148389 035 $a(MiAaPQ)EBC1585291 035 $a(Au-PeEL)EBL1585291 035 $a(CaPaEBR)ebr10826721 035 $a(CaONFJC)MIL560349 035 $a(OCoLC)867318603 035 $a(PPN)190997222 035 $a(EXLCZ)992550000001180235 100 $a20140125h20142014 uy 0 101 0 $ager 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 04$aThe physics and engineering of compact quantum dot-based lasers for biophotonics /$fedited by Edik U. Rafailov ; cover illustrations by Stefan Breuer ; Rodrigo Aviles-Espinosa [and sixteen others], contributors 210 1$aWeinheim, Germany :$cWiley-VCH,$d2014. 210 4$dİ2014 215 $a1 online resource (266 p.) 300 $aDescription based upon print version of record. 311 $a3-527-41184-4 311 $a1-306-29098-8 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aThe Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics; Contents; Foreword; List of Contributors; Chapter Introduction; References; Chapter 1 Quantum Dot Technologies; 1.1 Motivation for Development of Quantum Dots; 1.2 Gain and Quantum Confinement in a Semiconductor Laser; 1.2.1 Top-Down Approach; 1.2.2 Bottom-Up Approach; 1.3 Self-Assembled Quantum Dot Technology; 1.3.1 Molecular Beam Epitaxy; 1.3.2 Growth Modes; 1.3.3 Quantum Dot Growth Dynamics; 1.3.3.1 The Interaction of the Quantum Dot and the Wetting Layer 327 $a1.3.3.2 The Interaction of the Quantum Dot with Underlying Layers and Capping Layers1.3.3.3 Growth Interruption; 1.3.3.4 Arsenic Pressure; 1.3.3.5 Growth Temperature; 1.3.3.6 Growth Rate and Material Coverage; 1.3.4 Quantum Dot Growth Thermodynamic Processes; 1.4 Physics and Device Properties of S-K Quantum Dots; 1.4.1 Temperature Insensitivity; 1.4.2 Low Threshold Current Density; 1.4.3 Material Gain and Modal Gain; 1.4.4 Broad Spectral Bandwidth Devices and Spectral Coverage; 1.4.5 Ultrafast Gain Recovery; 1.5 Extension of Emission Wavelength of GaAs-Based Quantum Dots 327 $a1.5.1 Short-Wavelength Quantum Dot Light Emission1.5.1.1 InP/GaInP Quantum Dots; 1.5.1.2 Type II InAlAs/AlGaAs Quantum Dots; 1.5.2 Long-Wavelength QD Light Emission; 1.5.2.1 Low Growth Temperature InAs/GaAs Quantum Dots; 1.5.2.2 InAs QDs Grown on an InGaAs Metamorphic Layer; 1.5.2.3 InGaAsSb Capped InAs/GaAs Quantum Dots and InGaNAs Capped InAs/GaAs Quantum Dots; 1.5.2.4 Bilayer InAs/GaAs QD Structures; 1.5.2.5 Asymmetric Dot in WELL QD Structure; 1.6 Future Prospects; Acknowledgments; References; Chapter 2 Ultra-Short-Pulse QD Edge-Emitting Lasers; 2.1 Introduction; 2.2 Simulations 327 $a2.3 Broadly Tunable Frequency-Doubled EC-QD Lasers2.4 Two-Section Monolithic Mode-Locked QD Lasers; 2.4.1 Simultaneous GS and ES ML; 2.4.2 QD Absorber Resistor-SEED Functionality; 2.4.3 Pulse Width Narrowing due to GS Splitting; 2.5 Tapered Monolithic Mode-Locked QD Lasers; 2.5.1 High-Peak Power and Subpicosecond Pulse Generation; 2.5.2 Suppression of Pulse Train Instabilities of Tapered QD-MLLs; 2.6 QD-SOAs; 2.6.1 Straight-Waveguide QD-SOAs; 2.6.2 Tapered-Waveguide QD-SOAs; 2.6.3 QD-SOA Noise; 2.7 Pulsed EC-QD Lasers with Tapered QD-SOA; 2.7.1 EC-MLQDL 327 $a2.7.2 EC-MLQDL with Postamplification by Tapered QD-SOA2.7.3 Wavelength-Tunable EC-MLQDL with Tapered QD-SOA; 2.8 Conclusion; Acknowledgments; References; Chapter 3 Quantum Dot Semiconductor Disk Lasers; 3.1 Introduction; 3.2 General Concept of Semiconductor Disk Lasers; 3.3 Toward Operation at the 1-1.3 ?m Spectral Range; 3.4 Quantum Dots Growth and Characterization; 3.5 Quantum Dots for Laser Application: From Edge Emitters to Disk Lasers; 3.6 Details of the Quantum Dot Gain Media for Disk Cavity; 3.6.1 1040 nm Disk Gain Design; 3.6.2 1180 nm Disk Gain Structure 327 $a3.6.3 1260 nm Disk Gain Structure 330 $aWritten by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics. 606 $aLasers 606 $aQuantum dots 606 $aPhotobiology 606 $aPhotonics 615 0$aLasers. 615 0$aQuantum dots. 615 0$aPhotobiology. 615 0$aPhotonics. 676 $a621.366 701 $aRafailov$b Edik U$01723872 701 $aBreuer$b Stefan$0127381 701 $aAviles-Espinosa$b Rodrigo$01723873 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910825338703321 996 $aThe physics and engineering of compact quantum dot-based lasers for biophotonics$94125469 997 $aUNINA